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Figure 1:Anoverviewof the intelligent suggestion timingproblem.While a user is attempting to select an icon in virtual reality,
a targetpredictionmodel couldbe continuously estimating the likelihood that theuserwill select each icon (e.g., at timestamp 𝑡𝑥
and 𝑡𝑦).Dependingon the results of these estimations, a systemcould thendisplayan intelligent suggestion to theuser thathigh-
lights themost probable icon for them to select. This suggestion, for example, could enable them to select an iconusing a simple
click, so that theuserdoesnotneed tomanuallypoint towards the icon.While suchsuggestionscould improve theusabilityof in-
telligentuser interfaces, it is currentlyunknownwhetherearlysuggestions,whichcouldsave theuser timeandeffortbutmaybe
less accurate, or later suggestions, which could save less time and effort butmay bemore accurate, aremore beneficial for users.

ABSTRACT
Intelligent suggestion techniques can enable low-friction selection-

based input within virtual or augmented reality (VR/AR) systems.

Such techniques leverage probability estimates from a target pre-

diction model to provide users with an easy-to-use method to select

the most probable target in an environment. For example, a system

could highlight the predicted target and enable a user to select it with

a simple click. However, as the probability estimates can be made

at any time, it is unclear when an intelligent suggestion should be
presented. Earlier suggestions could save a user time and effort but

be less accurate. Later suggestions, on the other hand, could bemore

accurate but save less time and effort. This paper thus proposes a

computational framework that can be used to determine the optimal

timing of intelligent suggestions based on user-centric costs and ben-

efits. A series of studies demonstrated the value of the framework for

minimizing task completion time and maximizing suggestion usage
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and showed that it was both theoretically and empirically effective

at determining the optimal timing for intelligent suggestions.
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1 INTRODUCTION
Target selection in virtual and augmented reality (VR/AR) systems is

difficult, especiallywhen interactionscenariosarecomplex (e.g.,with

small, faraway, cluttered objects) and input techniques are cumber-

some touse (e.g.,mid-air handpointing). Recent researchhas utilized

statistical or machine learningmodels to estimate the likelihood of a

user selecting different items or objects of interest [20, 25, 65]. Based

on the estimated probabilities computed by these models, an interac-

tion systemmay thenuse visual highlighting or display anotification
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to draw the user’s attention towards themost probable target. Next, a

usermay select the predicted target with a shortcut (such as a simple

click) [1, 30, 70]. Such techniques can alleviate the need to manually

point at targets or conduct a full visual search of an environment, po-

tentially leading toquicker, easier, andmorecomfortable interactions.

They can also be useful within VR/AR systems that employ noisy,

high-friction input modalities [1, 22, 70] or support scenarios that

require users to complete manually-intensive or mental-demanding

tasks, such as selecting objects in a cluttered environment or nav-

igating through a complex hierarchical menu [17, 25, 38, 71].

Whilecurrent targetpredictionmodels candeterminewhich target
a user may select, they cannot determinewhen intelligent sugges-
tions should be provided to users. While an earlier suggestion could

save a user time and effort, such suggestions have a higher chance

of being incorrect, which could cause users frustration, break their

trust, or decrease their performance [12, 40]. On the other hand, later

suggestions are likely to bemore accurate but less beneficial because

users have already spent ample time and effort to complete their task.

By the time a model has accumulated enough evidence to be certain

of a user’s intended target, the user may have almost completed

their action, thus rendering the late-breaking intelligent suggestion

useless or disruptive (refer to Figure 1 for a problem overview).

Despite this important nuance, existing target prediction models

have not scrutinized when to offer a suggestion and instead used

a heuristically proposed probability threshold. For example, prior

work on forecasting which target a user might reach towards with

their hands used a threshold of 85% because the model seemed ac-

curate enough at that point based on their evaluation of the model

confidence value over time [20]. In contrast, Huang et al. used a

threshold of 43% when predicting which sandwich ingredient a user

might choose via gazing [36]. Theyused this threshold because itwas

based on the averagemodel confidence value for a correct prediction.

The mixture of design intuitions and model performance observa-

tions used in this prior work may not lead to optimal suggestion

timings—one may wonder if a better threshold could be chosen. Fur-

thermore, this prior research did not consider the user-centric costs

and benefits of intelligent suggestions (e.g., the exact time saved by

a suggestion). Thus, this research introduces the COBO (cost-benefit

optimization) framework, which determines the optimal timing of

intelligent suggestions by considering user-centric costs and ben-

efits. Specifically, COBO uses the probability estimates computed

by a target prediction model over time as input and quantifies the

cost and benefit of a suggestion to produce a final gain function. The

obtained gain function then enables the determination of the most

beneficial timing for suggestions either through optimization of this

function or through designer’s intuition.

To study how users would respond to an intelligent suggestion

displayed at different timings, a dense target selection task and a text

matching taskwere implemented inVR.VRwaschosenas the testbed

because VR input techniques such as mid-air pointing are effortful

and are likely to benefit from intelligent suggestions. Based on the

study results, cost and benefit functions were developed and simula-

tions were run under two optimization strategies – Optimal Thresh-

olding and Reinforcement Learning – to minimize user task comple-

tion time and maximize intelligent suggestion usage. The efficacy

of these strategies was then verified in two validation experiments,

which showed that COBOwas helpful for determining the optimal

timing of intelligent suggestions both theoretically and empirically.

The primary contributions of this research are:

• A framework (i.e.,COBO) to optimize the timing of intelligent

suggestions through a computational approach that considers

user-centric costs and benefits.

• Study outcomes that demonstrate the effectiveness of COBO

for intelligent suggestion timing optimization on two objec-

tives: minimizing user task completion time and maximizing

intelligent suggestion usage.

2 BACKGROUNDANDRELATEDWORK
This researchwas informed by facilitation techniques that aim to im-

proveuser performance and saveuser efforts in object selection tasks.

It also took inspiration fromworks that applied probabilistic mod-

els to estimate user-intended target(s) and research that leveraged

Reinforcement Learning for objective optimization in interactive

applications.

2.1 Selection Facilitation Techniques
Selection facilitation techniques have been used as a method to

improve interaction since the introduction of early graphical user

interfaces. While numerous techniques have been proposed, the

majority decrease the movement distance required to reach a target

and/or increase the effective size of the target [28]. To shorten the

movement distance, techniques may snap the cursor to the target

(e.g., [10, 73]). To increase the target size, techniques may expand

the target [44] or resize the cursor [28, 46]. A visual indicator (e.g.,

visual highlighting) may also provide feedback when a technique

has selected a candidate object. The user can then use an explicit

action (e.g., a button press) to confirm that the object that is currently

selected is the one they desired to select.

Selection facilitation techniqueshavealsobeenexplored inVR/AR

scenarios (see surveys such as [6, 42]). For example, Schjerlund et al.

applied multiple virtual hands to shorten the selection distance [60]

and Baloup et al. compared various raycasting-based methods that

enlarged the objects’ effective size in VR [11]. Selection facilitation

techniques have been applied to VR/AR systems because mid-air

pointing, which is a commonly used inputmodality in these systems

for 3D input, can be inefficient and imprecise [7, 70].

More relevant to the present research are selection techniques that

predict user-intended targets [1, 70]. In addition to decreasing target
distances and increasing target sizes, prediction-basedmethods have

also been found to reduce search time [15]. While a user may have

trouble finding the intended target in more complex environments

(e.g., those with lots of visual clutter), an intelligent suggestion can

present a potential target to users, thus minimizing the time spent

searching and manually pointing. We describe these techniques in

the next section.

2.2 Target Prediction
Users’ intended selection targets can be sensed through behavioral

cues, such as body and eye movements. Much existing research fo-

cuses onbuildingmodels that appropriate gaze traces or scanpaths to

predict selection intentions [21, 37, 39, 59, 61, 72]. For example, Borji

et al. [15] built models that predicted search targets based on gaze
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fixations on a large random-dot array. Their modeling rationale was

that attention and gaze are guided toward visual features that are

similar to a search target. Using this approach, they demonstrated

that their models outperformed a random baseline, especially when

a larger number of fixations was considered. Huang et al. [36] used

a support vector machine model to predict a customer’s intended

target in a sandwich-making scenario and made correct estimations

approximately1.8 secondsbefore a customer’s spoken request. Sattar

et al. [58] proposed a model to predict the categories and attributes

of user intended objects from gaze data, which were then used to

reconstruct plausible targets. Researchers have also explored target

forecasting in VR (e.g., [35]), with some taking advantage of gaze

fixations to anticipate users’ hand movements while reaching for

objects [19, 26].

Hand and input device trajectories have also been used in selec-

tion tasks to infer user-intended targets [13, 14, 47, 74]. For example,

Ahmad et al. [1–4] investigated probabilistic intent prediction ap-

proaches for in-vehicle touchscreen input basedonpointinggestures.

Yu et al. [70] examined the selection distribution of VR input con-

trollers and used this information to predict the likelihood of a user

selecting a candidate object. Clarence et al. [20] used long short-

termmemory (LSTM) models to predict the probability of selecting

candidate objects using hand-reach features such as position and

orientation. Researchers have also predicted future cursor positions

in target-agnostic manners (e.g., [10, 30–32, 41, 43, 51, 68]).

In addition to user behaviour, models can also make use of users’

preceding actions or contextual information to infer their next se-

lection intent [27, 66, 67]. For instance, Goodman et al. [27] applied

a language model for text entry to estimate the most likely selected

key based on an entered sequence and the current input distribution.

White et al. [67] leveraged interaction contexts such as previous

search queries and clicks to predict users’ short-term interests.

Although target predictionmodels can be effective at determining

which object a user intends to select previous work has not exam-

inedwhen intelligent suggestion should be enabled to maximize its

benefits. Some researchers have used design intuitions to trade-off

between successful early predictions and the possibility of intro-

ducing false positives [1, 20, 36]. Others chose to always display a

predicted target (e.g., typing predictions). However, intuitions may

not lead to optimized performance and always-on, constantly chang-

ing suggestions during cursor navigation or visual searchmight lead

to user costs thatwere not anticipated, especially inVR/AR scenarios

where screen space is limited and distraction may be costlier. As

such, our research introduces a method for optimizing the timing

of intelligent suggestions that was designed to be extensible to any

of these aforementioned prediction models.

2.3 Reinforcement Learning
Recently, reinforcement learning (RL) has been used in the devel-

opment of adaptive user interfaces [25, 62] and human behavior

simulations [18, 33]. In a typical training setting, an RL agent in-

teracts with its environment using a set of actions and receives

corresponding feedback (i.e., rewards or penalties) to help it learn

from the environment [8]. Through this trial-and-error process, the

agent can discover an action policy that leads to amaximized reward.

Such a learning paradigmmay be particularly suitable for interactive

settings that incorporate human-in-the-loop [9].

HCI researchers have applied both model-based and model-free

RL for interface optimization. For example, Todi et al. [62] leveraged

model-based RL that utilized predictive HCImodels to estimate a po-

tential reward of an agent’s action. Their model-based agent learned

to adapt menu interfaces through order changing or grouping to

improve user performance. In contrast, Gebhardt et al. [25] applied

model-freeRL to support users in a visual search taskby showingand

hiding object labels (e.g., price tags). Their RL agent observed user

behavior (i.e., gaze trajectories) and received rewards or penalties

depending onwhether a label was shownwhen the user’s gaze point

was fixated on the object. Compared tomodel-based approaches, the

model-free agent did not make predictions about the next state and

reward before it took an action.

The present work employs model-free RL to discover an optimal

policy of suggestion timing. Model-free RL was chosen because it

does not require a transition dynamics model to derive a useful pol-

icy. The reward function integrated user-centric costs and benefits

in terms of, for example, the exact time saved in seconds.

3 RESEARCHOVERVIEW
Our framework relies on quantifying user-centric costs and benefits

of a suggestion over time (e.g, the exact time saved by a suggestion)

to produce a final gain function for optimal suggestion timing de-

termination. In the following sections, we introduce our framework

and present three studies that aimed to demonstrate and validate

the proposed framework.

The first is a user study to collect data to approximate the cost and

benefit functions related to two optimization objectives (i.e., time

saved and suggestion usage percentage) in a manually-intensive

task and a mentally-demanding task. This is essential to complete

the cost and benefit quantification step in the framework.

The second is a simulation study where simulations were run

with two optimization strategies (Optimal Thresholding and Rein-

forcement Learning) for single- and multi-objective optimization.

These simulations aimed to optimize the gain functions related to

the objectives and theoretically evaluate the optimization strategies.

In the third study, the optimization findings were empirically

validated by running user studies that compared the optimal tim-

ing of intelligent suggestions produced by our framework against

two baselines—heuristic-based thresholding and no suggestion. The

baselines help contextualize the impact of our solution relative to

a literature baseline and interfaces that offer no suggestions.

4 COBO FRAMEWORK
COBO (cost-benefit optimization) is a framework to optimizewhen
to display intelligent suggestions by considering the costs and ben-

efits that an intelligent suggestion may provide to the user (e.g., the

exact time saved) given specific timing andmodel probabilities.More

precisely, COBO takes input probability estimations from a target

prediction model and user-centric costs and benefits of a suggestion

over time to form a final gain function. The optimized suggestion

timing is then determined by finding themaximum gain on this gain
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function curve (Figure 2). To apply the COBO framework, three com-

ponents are needed: a target predictionmodel, a method for cost and

benefit quantification, and a strategy for gain function optimization.

4.1 Target PredictionModel
Target prediction models are probabilistic models that infer a user’s

intended target of interest. A model typically produces a probability

distribution {𝑝𝑘𝑡 } among 𝑁 potential candidates, which indicates

the likelihood of a user selecting each candidate 𝑘 ∈K = {1,...,𝑁 } at
timestamp 𝑡 (Figure 2 left). It may then output the most likely target

and its corresponding probability value 𝑞𝑡 (also called the model

confidence). In themodel, timestamp 𝑡 ∈ {1,...,𝑇 }, where𝑇 is the total

number of timestamps that the model produces estimations since

the onset of the selection until the user manually selects a target. In

the present work, the target prediction models produce output at a

constant frequency 𝑓 . Therefore, timestamp 𝑡 can be converted to

time in seconds 𝑡𝑠 using 𝑡𝑠 =𝑡/𝑓 .
The target prediction models can be trained using data collected

fromvarious information channels (e.g., user handmovement [1, 20],

eye gaze information [21, 36], prior selection information [27], etc.).

While the output of the target prediction model (i.e., probability esti-

mates over time) is used as input to the COBO framework, themodel

itself is not a part of the framework. For simplicity, this research

only displays intelligent suggestions for the most probable object.

Thus, only the model confidence 𝑞𝑡 is used as input to the COBO

framework rather than the whole probability distribution. It is also

assumed that model confidence is a reasonable approximation of the

ground truth prediction accuracy [29, 49].

4.2 Cost and Benefit Quantification
COBO requires a quantification of the user-centric costs and benefits

of displaying an intelligent suggestion over time based on the opti-

mization objective. For example, if the objective is to minimize user

task completion time, the cost and benefit quantification can use

an estimation on how long it takes users to respond to suggestions,

how much time a correct suggestion may save, and how much of

a time delay an incorrect suggestion may cause. Such quantifica-

tion can be specified from the results of empirical user studies or

through literature-informed assumptions. The obtained cost func-

tion Cost(𝑡) and benefit function Benefit(𝑡) can then be used to

build a final gain function.

The total gain of displaying an intelligent suggestion for the most

probable object at a particular timestamp 𝑡 is shown in Equation 1.

The gain function is equivalent to the benefit obtained, multiplied

by the probability that the predicted object is the true target minus

the cost, multiplied by the probability of the object not being the real

target.

Gain(𝑡)=Benefit(𝑡) ·𝑞𝑡 −Cost(𝑡) · (1−𝑞𝑡 ) (1)

When applying the COBO framework, the gain objective can vary

in different applications according to a designer’s needs (e.g., min-

imizing completion time, minimizing induced errors, maximizing

user satisfaction, etc.). This research demonstrates the optimization

of twogain objectives, i.e., the time saved byusers and the suggestion

usage percentage.

4.2.1 Time Saved by Users. Task completion time is an obvious

metric of user task performance. Ideally, an effective user interface

shortens task completion time, while maintaining accuracy to in-

crease user efficiency. Tomaximize time savings for users, the follow-

ing three variables were considered when displaying an intelligent

suggestion at timestamp 𝑡 :

• Response time RT(𝑡): the time elapsed between the first ap-

pearance of a correct suggestion and the time when the user

applies the suggestion (e.g., through a simple click).

• Response rate RR(𝑡): the overall user response rate to a correct
suggestion.

• Delayed time DT(𝑡): the average time delay caused by display-

ing an incorrect suggestion.

For simplicity, we assume that there are minimal effects of i) the de-

layed time of a correct suggestion if a user does not apply it and ii) the

response timeof an incorrect suggestion if auser assumes it is correct.

For a given trial with total timestamps 𝑇 , the potential benefit

of displaying a suggestion at 𝑡 is represented in Equation 2. The

equation can be interpreted as the estimated timestamps saved if a

correct suggestion is given at 𝑡 , multiplied by their rate of response.

The max function ensures the benefit value is no smaller than 0.

Benefit(𝑡)=max(0,𝑇 −(𝑡+RT(𝑡))) ·RR(𝑡) (2)

The potential cost is the time delay caused by an incorrect predic-

tion (Equation 3).

Cost(𝑡)=DT(𝑡) (3)

Inserting Equation 2 and 3 into Equation 1, results in an estimated

gain function that considers the timestamps saved for users (Equa-

tion 4). It can be converted to the time saved in seconds by dividing

it by the model output frequency 𝑓 .

Gain(𝑡)=max(0,𝑇 −(𝑡+RT(𝑡))) ·RR(𝑡) ·𝑞𝑡 −DT(𝑡) · (1−𝑞𝑡 ) (4)

4.2.2 Suggestion Usage Percentage. Although time savings is a use-

ful objective for performance improvement, it may not necessarily

be valuable to the user experience. For example, previous work has

shown that even when word prediction may impair average text

entry speeds onmobile devices, users still prefer to use them [50, 54].

As such, we also sought to optimize for intelligent suggestion us-

age percentage. It was assumed that as long as a user applies an

intelligent suggestion, it leads to a preferred user experience.

Based on this, the gain function can be written as Equation 5. The

benefit function is approximated by the likelihood of users respond-

ing to a correct suggestion. For simplicity, the probability of users

applying an incorrect suggestion is ignored so the cost function is

omitted.

Gain(𝑡)=RR(𝑡) ·𝑞𝑡 (5)

4.3 Gain Optimization
The value of the gain function Gain(t) changes over time such that

themodel confidence value𝑞𝑡 , the user-centric cost Cost(t), and ben-
efit Benefit(t) will be different as the task progresses and 𝑡 increases.
In real applications, the target selection model does not infer when

a user starts the task (𝑡 =0) or when the user finishes the task, so the

task progress is unknown to the prediction model. One solution is

thus to infer 𝑡 from the the real-time model confidence value of the

target prediction model 𝑞𝑡 because the model tends to become more

confident in its predictions as the user reaches the end of their task.

Several prior studies have indicated that the relationship between

𝑡 and 𝑞𝑡 may follow a sigmoid function [20, 36], thus the implicit
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Figure 2: An overview of the COBO framework. COBO uses the probability estimates of a target predictionmodel as input and
quantifies the cost and benefit of the suggestion over time to produce a final gain function. The gain function is computed using
the benefit of displaying a suggestionminus its cost across the time axis. By applying an optimization strategy, the framework
determines when displaying a suggestion will be useful (gain > 0) and when the gain value (𝑚𝑎𝑥 (gain)) will bemaximized.

relationship between 𝑡 and 𝑞𝑡 can be modelled as 𝑡 =𝑔(𝑞𝑡 ). By doing
this, the final objective function (Equation 6) only depends on the

real-time confidence output 𝑞𝑡 . The objective function returns the

𝑞𝑡 that leads to the maximum gain. The returned 𝑞𝑡 can be directly

applied to determine a suggestion timing. For example, if the opti-

mized 𝑞𝑡 =0.6, the system should display an intelligent suggestion

when the model confidence reaches 0.6.

argmax
𝑞𝑡 ∈[0,1]

[Benefit(𝑔(𝑞𝑡 )) ·𝑞𝑡 −Cost(𝑔(𝑞𝑡 )) · (1−𝑞𝑡 )] (6)

In practice, we obtain the mapping function 𝑡 = 𝑔(𝑞𝑡 ) from a

training dataset𝐷𝑡𝑟𝑎𝑖𝑛 . The purpose of𝐷𝑡𝑟𝑎𝑖𝑛 is to provide known

relationship between 𝑡 and 𝑞𝑡 so that an optimization strategy can

learn how to handle new real-time𝑞𝑡 values. In thiswork,we created

a dataset,𝐷𝑡𝑟𝑎𝑖𝑛 , wherein each data trial consisted of known 𝑞𝑡 val-

ues for all 𝑡 ∈ {1,...,𝑇 }. Such a dataset can also be generated by using
a trained prediction model to produce 𝑞𝑡 for each 𝑡 ∈ {1,...,𝑇 } of the
feature data (e.g., handmovement [20] or gaze information [36] over

time). Once𝐷𝑡𝑟𝑎𝑖𝑛 and the cost and benefit functions are available,

an optimization strategy can calculate the expected gain by simu-

lating the effect of enabling intelligent suggestions at different 𝑞𝑡
(which correspond to a known 𝑡 ) on the trials in 𝐷𝑡𝑟𝑎𝑖𝑛 , to conse-

quently compute an optimal solution over the training set. With the

hypothesis that the training data is a reasonable approximation of

the unseen testing data, the optimized solution can be generalized

to real applications.

Since the objective is to find a 𝑞𝑡 or a set of 𝑞𝑡 s that can lead to

the maximum gain, various optimization methods can be applied

to solve this problem. In this work, two optimization strategies (i.e.,

Optimal Thresholding and Reinforcement Learning) were explored.

4.3.1 Optimal Thresholding (OT). The Optimal Thresholding strat-

egy aimed to obtain a single optimized model confidence threshold

that worked best on𝐷𝑡𝑟𝑎𝑖𝑛 . To achieve this aim, different confidence

values 𝑞𝑡 ∈ [0,1] were tested and the 𝑞𝑡 that lead to the highest

expected gain on𝐷𝑡𝑟𝑎𝑖𝑛 was selected.

4.3.2 Reinforcement Learning (RL). Rather than relying on a single
threshold for all trials, RL-based optimization strategies can pro-

vide “dynamic thresholds” based on the profile of each trial (e.g.,

the speed of increase of the model confidence value). This has the

potential to further boost the optimization performance compared

to Optimal Thresholding. Therefore, RL was applied to derive opti-

mal policies for intelligent suggestions that could reach the highest

gain on𝐷𝑡𝑟𝑎𝑖𝑛 . Specifically, our RL agents observed the incoming

probability estimations and explored different action sequences (i.e.,

displayed an intelligent suggestion or not) to ultimately find optimal

action sequences that would lead to the maximum gain. Additional

details about the RL agents are in Section 6.3.

5 STUDY 1 - DATACOLLECTION
The primary goal of the first studywas to quantify the cost and bene-

fit of the two optimization objectives. To this end, data was collected

from participants while they responded to an intelligent suggestion

displayed at different timings. Specifically, this study focused onhow

much time it took participants to respond to a correct suggestion, the

usage percentage of the correct suggestion over time, and the trial

completion delay incurred by an incorrect suggestion. Two different

task scenarios (manually-intensive vs. mentally-demanding) and

two different suggestion types (visual highlighting versus pop-up

notification) were used to explore whether these factors would lead

to different participant responses. We tested these factors because

they could be the main determinants of user behavior towards an

intelligent suggestion.

We used a two-session data collection study methodology. In the

first session, baseline user performance (e.g., task completion time)

was collected while participants performed a dense target selection

task and a text matching task. The baseline user performance was

used to inform the suggestion timing interval for the second ses-

sion. In the second session, correct and incorrect suggestions within

the earlier determined timing intervals were displayed and the re-

sulting participant behavioral data were recorded. This enabled the

measurement of the costs and benefits of the suggestion.

We here prioritize high-level concepts andmore relevant contents

in our presentation. We refer readers to Appendix A for more de-

tailed descriptions of the task scenarios and suggestionmethods and

the significance testing results.
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Figure 3: Screenshots of the dense target selection task (left)
and the textmatching task (right).

Figure 4: Highlighting notification (left) and pop-up sugges-
tion (right) used in the dense target selection task.

5.1 Participants and Apparatus
Sixteen participants (6 women and 10 men) were recruited and pro-

vided informed consent on attending the study. Participant ages

ranged from 23 to 47 (𝑚𝑒𝑎𝑛=36.6, 𝑠𝑡𝑑 =7.7, one participant did not

report their age). All participants had normal or corrected-to-normal

vision and all were right-handed. Twelve participants had used VR

devices for 0-5 hours per week, three used them for 5-10 hours, and

one had never used a VR device before. As participation was remote,

participants received equipment to use in the study by mail (i.e., an

Oculus Quest 2, two Touch controllers, and a laptop with an GTX

1070 graphics card) and met with the researchers during a video call

to complete the study.

5.2 Task Scenarios
Two task scenarios, representative of common interaction tasks that

are effortful to perform, were employed (see Figure 3). The dense tar-

get selection task represented a manually-intensive task, where par-

ticipants needed to select a small object located at the center of a clus-

ter [46, 64]. The text matching task served as a mentally-demanding

task, where participants needed to find and select an object with text

that matched a target text. This task simulated real-world, search-

heavy scenarios like searching for ingredients from a receipt, finding

street names on a map, or browsing through a menu [52].

5.3 SuggestionMethod
Two suggestionmethods were used in the study—a highlighting sug-

gestion and a pop-up suggestion. With the highlighting suggestion,

a blinking fluorescent outline was displayed around the suggested

object (Figure 4 left). The highlighting suggestion was in-situ, so

it remained at the object location without following the direction

participants were looking. With the pop-up notification suggestion,

a suggestion window appeared at the bottom of the participant’s

current viewing direction (Figure 4 right) [57]. When participants

rotated their viewing direction, the pop-up notification followed the

viewing direction. For both suggestions, participants could quickly

access the suggestedobject via theButtonAordiscard the suggestion

by tilting the joystick to the right.

5.4 Study Design
The study included two sessions. The first session used a within-

subject design with one factor, Task Type (dense target selection

and text matching), to collect baseline user performance. Each task

had 48 trials, with the first 3 trials being discarded as practice trials.

The order of Task Typewas counterbalanced. In total, 1440 trials

were recorded (= 16 participants × 2 task types × 45 repetitions).

The second session was conducted on a later day with the same

pool of participants after they had all finished the first session. It

also used a within-subject design but had three factors: Task Type

(dense target selection and text matching), Suggestion Method

(highlighting and pop-up notification), and SuggestionMode (cor-

rect, incorrect, and no suggestion). A suggestion, if there was one,

was generated within a specific timing interval ([0𝑠,3.1𝑠] for the
dense target selection task and [0𝑠,7.6𝑠] for the text matching task).

The suggestion timing was then randomly sampled within this in-

terval in each task to help us better understand how users respond

to suggestions over time. The mean task completion time from the

first session was used as the maximum suggestion timing for the

second session, as users normally finish the task manually before

these upper-bound times. The order of Task Type and Suggestion

Methodwere counterbalanced, and the order of SuggestionMode

was randomizedwithin each block.When a participantwasworking

on a certain task type with a suggestion method, a suggestion may

or may not appear and could be correct or incorrect. In Session 2,

each conditionwas repeated 32 times (2 practice trials). In total, 5760

trials were recorded (= 16 participants × 2 task types × 2 suggestion

methods × 3 suggestion modes × 30 repetitions).

5.5 Study Procedure
The same procedure was used for both sessions of the study. Each

session started by introducing the two experimental tasks and sug-

gestion methods (only for session 2). In session 1, participants then

practiced the two tasks. In session 2, they practiced the scenarios

with and without the two suggestion types in each task. The sug-

gestion timing was shortened to 1/3 of the original intervals during

practice to ensure they saw a suggestion. They then started the ex-

periment where they were asked to complete each task as fast and

as accurately as possible, and were encouraged to use intelligent

suggestions if they were correct. They were given breaks between

blocks. After session 2, they completed a post-study questionnaire.

5.6 Results - Session 1
Before the baseline task completion time was computed, the data

was pre-processed to remove outliers that deviated more than three

standard deviations from themean (𝑚𝑒𝑎𝑛±3𝑠𝑡𝑑). This lead to 9 trials
(1.25%) being discarded for the dense target selection task and 19

trials (2.64%) being discarded for the text matching task. A total of

711 trails and 701 trials were left for analysis, respectively.

The completion times for both tasks followed log-normal distri-

butions. Using the maximum-likelihood estimation, the calculated

distribution parameters were `=1.13, 𝜎 =0.25 for the dense target

selection task and `=1.88, 𝜎 =0.60 for the text matching task. Par-

ticipants took an average of 3.21 seconds (𝑠𝑡𝑑 =0.86) to complete the

dense target selection task and an average of 7.77 seconds (𝑠𝑡𝑑 =4.6)

6
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Figure 5: Examples of themodeling results for response time,
response rate, and delayed time. The dots represent the data
trials, the black lines are the model fitting results provided
byMARS, and the ribbons indicate 95% CI.

to complete the text matching task. The overall accuracies were

94.09% and 100%, respectively.

5.7 Results - Session 2
Pre-processing the session 2 data involved first discarding trials

where participants completed the task before an intelligent sug-

gestion was displayed (i.e., 222 (7.71%) dense target selection trials

and 447 (15.52%) text matching tasks). Additionally, trials outside

𝑚𝑒𝑎𝑛±3𝑠𝑡𝑑 , were also removed (i.e., 30 (1.04%) dense target selec-

tion trials and 40 (1.39%) text matching trials). This left 2628 trials

and 2393 trials, respectively, for each task for analysis. The overall

accuracy for the dense target selection task was 95.09% and 99.28%

for the text matching task.

5.7.1 Response Time. Response time was defined the time elapsed

between the appearance of a correct intelligent suggestion and a

participant’s selection of that suggestion.Weusedmultivariate adap-

tive regression splines (MARS) to model the relationships between

suggestion timing and response time. MARS was used because it

tries to find multiple linear regression lines to fit data while bal-

ancing goodness-of-fit and simplicity. The linear regression lines

were connected through hinge functions (ℎ(𝑥 −𝑐) =𝑚𝑎𝑥 (0,𝑥 −𝑐)
or ℎ(𝑐 −𝑥) =𝑚𝑎𝑥 (0,𝑐 −𝑥) where 𝑐 was a constant called knot) to

provide non-linear approximations of the data. The maximum num-

ber of terms was set to two for the robustness of the model. The

resulting equations for the four conditions are summarized in Table

1. Figure 5A shows graphic illustrations of the relationship between

suggestion timing and response time of two example conditions .

5.7.2 Response Rate. Response rate was defined as the likelihood
that participants accepted a correct suggestion.We appliedMARS to

model the relationship between the response rates and suggestion

timings directly. Specifically, suggestion timingwas used as a predic-

tor and the accuracy of the suggestion was as the target variable (0:

incorrect, 1: correct). The regression results then approximated the

percentage of participants accepting a correct suggestion over time

(Figure 5B). Table 1 summarizes the corresponding MARSmodels.

5.7.3 Delayed Time. Delayed time was the time delay that was

incurred due to incorrect suggestions. For a given trial, it was infea-

sible to record the task completion time both with and without a

suggestion (even if we repeated the trial, factors such as learning and

familiarity would differ). Therefore, this metric was computed using

the task completion time of each trial with an incorrect suggestion

minus the average task completion time in the corresponding condi-

tion with no suggestion. The calculated distribution then allowed us

to determine the average delay an incorrect suggestion would cause

across different suggestion timings (Figure 5C). The delayed time

data was fit into the MARSmodel for each condition. The results are

summarized in Table 1.

5.8 Summary
Based on the data collection results, MARS models were able to sim-

ulate how participants would respond to an intelligent suggestion at

different timings (Table 1). Themodels resulted in reasonable approx-

imations of cost functions Cost(t) and benefit functions Benefit(t)
for the two objectives. The gain of displaying an intelligent sugges-

tion at timestamp 𝑡 can thus be calculated via Equation 4 and 5. From

the study results, it was also determined that the gain functions for

the four conditions (Task Type × SuggestionMethod) were quite

different. Therefore, the four conditions were handled differently in

later evaluations.

6 STUDY 2 - SIMULATION
The primary goal of the second study was to conduct a theoretical

evaluation of the two suggestion timing optimization strategies -

Optimal Thresholding (OT) and Reinforcement Learning (RL). To

achieve this, a mock target prediction model that generated various

data trials (𝐷𝑡𝑟𝑎𝑖𝑛) during the two task scenarios was built. Simula-

tions were run to estimate the gain of the optimization strategies.

To constrain the search space, the study focused on applying high-

lighting suggestions for the dense target selection task, as it was less

intrusive, and using pop-up notifications for the text matching task,

as it led to quicker responses.

The following subsections first present themock target prediction

model that was used to generate𝐷𝑡𝑟𝑎𝑖𝑛 and then introduce the four

simulation experiments that were undertaken. In Simulation 1, the

performance of OT was bench-marked for the time saved for partic-

ipants versus the suggestion usage percentage. The performance of

the baselines that leveraged the design heuristics were also used to

determine thresholds. In Simulation 2, RL was applied for optimiza-

tion. In Simulation 3, multi-objective optimization (i.e., time saved

and usage percentage) was run with OT.
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Table 1: Summarization of themodeling results fromMARS (multivariate adaptive regression splines).

Task Type SuggestionMethod Response Time Response Rate Delayed Time

Dense Target Selection Highlighting 0.90+0.83·ℎ(1.19−𝑥) 0.97−0.24·ℎ(𝑥−1.02) 0.01+1.08·ℎ(𝑥−1.96)
Dense Target Selection Pop-up Notification 1.13+0.13·ℎ(𝑥−1.60) 1.00−0.24·ℎ(𝑥−0.98) 0.57+2.25·ℎ(𝑥−2.52)
Text Matching Highlighting 2.91 0.90 0.66+0.84·ℎ(𝑥−1.29)
Text Matching Pop-up Notification 1.47 0.96−0.03·ℎ(𝑥−3.90) 4.94−0.61·ℎ(7.13−𝑥)

Table 2: Testing results when using Optimal Thresholding
(OT) and Heuristic Thresholding (HT) regarding the dense
target selection (DTS) task and the textmatching (TM) task.

Task Strategy (Th.) Time Saved/Usage% % Improved

T
i
m
e
s
a
v
e
d DTS OT (0.47) 0.4073s (0.3202s) 39.39%

DTS HT (0.85) 0.2922s (0.3645s) -

TM OT (0.98) 1.6211s (1.7946s) 260.89%

TM HT (0.50) 0.4492s (1.1440s) -

U
s
a
g
e
%

DTS OT (0.81) 65.69% (18.30%) 0.36%

DTS HT (0.85) 65.45% (20.42%) -

TM OT (0.96) 87.17% (18.53%) 51.52%

TM HT (0.50) 57.53% (15.63%) -

6.1 Target PredictionModel Mock-up
As most models’ prediction accuracy values seem to follow sigmoid

curves over task progression (e.g., [2, 15, 20, 36]), we simulated a sim-

ilar model by mimicking the observed sigmoidal relation between

accuracy and time to generate𝐷𝑡𝑟𝑎𝑖𝑛 . Specifically, for each trial, we

first sampled trial length𝑇 based from the log-normal distribution

found in the first session of Study 1 (Figure 6A). Then, a sigmoid

function of task progression regarding prediction accuracywas com-

puted (Figure 6B-C) and deviations (i.e., spikes and dips) were added

to the sigmoid function (Figure 6D). More details of this mock-up

target prediction model can be found in Appendix B.1.

The mock-up target prediction model was limited in that it only

mimicked the appearance of the confidence curves, so it did not

capture the inherent decision information of a real target predic-

tion model. However, if the optimization strategies worked with a

pseudorandommodel, then they may also work with an actual tar-

get prediction model. Next, we present simulation results based on

30,000 trials generatedby themock-uppredictionmodel for each task

scenario. The trials were separated such that 90%were used for train-

ing and 10%were used for testing. Among the training data, 10%was

used for hold-out validation. We present only testing results in the

paper while readers can find the validation results in Appendix B.2.

6.2 Simulation 1: Optimal Thresholding
The Optimal Thresholding (OT) strategy sought to learn an opti-

mized confidence threshold from the dataset that would lead to the

best gain. To achieve this, different confidence values were tested

(𝑞𝑡 ∈ [0,1], 0.01 per step) and the corresponding gain was calculated
using Equation 4 and 5 from the first study. Figure 7 presents two

examples of how the gain in the time saved condition changed as the

confidence threshold 𝑞𝑡 varied. The optimized threshold was quite

different for the dense target selection task (𝑡ℎ𝑟𝑒𝑠 =0.47) compared

to the text matching task (𝑡ℎ𝑟𝑒𝑠 =0.98).

To benchmark the performance of OT, we picked a threshold that

worked the best on the validation dataset and produced the corre-

sponding results on the testing dataset. The baseline (i.e., Heuristic

Thresholding) for the dense target selection task was determined

to be 𝑡ℎ𝑟𝑒𝑠 = 0.85, which was directly appropriated from a similar

point-and-select task in the literature with sigmoidal prediction

curves [20]. The baseline for the text matching task was 𝑡ℎ𝑟𝑒𝑠 =0.50,

whichwasused topredict participant selections in a search-intensive

task like our text matching task (i.e., users’ intended ingredients in

a sandwich-making task [36]).

From the results, the optimized threshold was found to save 0.1

seconds more than the baseline in the dense target selection task

(around 40% of improvement) and 1 second more than the baseline

in the text matching task (around 260% of improvement; Table 2).

The optimized threshold also led to an 87% suggestion usage per-

centage in the text matching task (around 50% of improvement).

The optimized thresholds were quite different for the dense target

selection task for the time saving optimization (𝑡ℎ𝑟𝑒𝑠 = 0.47) and

usage percentage optimization (𝑡ℎ𝑟𝑒𝑠 =0.81), while being similar for

the text matching task (0.98 vs. 0.96).

6.3 Simulation 2: Reinforcement Learning
RL can potentially provide tailored solutions based on the target

prediction confidence profile of each trial (e.g., the speed of increase

of the model confidence value) by finding an appropriate threshold

to display suggestions that works for that specific profile. To achieve

this, model-free RL techniques were leveraged because there was

a lack of transition dynamics models for our problem. Thus, the

model-free RL agents observed the model confidence estimates 𝑞𝑡
from a target prediction model trained on 𝐷𝑡𝑟𝑎𝑖𝑛 , which were re-

played multiple times to the agent. On each trial, the agent explored

different action sequences (i.e., displayed an intelligent suggestion

or not) to ultimately find the optimal action sequence for a given 𝑞𝑡
trajectory that would lead to the maximum gain.

6.3.1 ProblemFormulation. Thekeyelementsof theRLagentswere:

• Observation: For a specific timestamp 𝑡 , the agent received the

following observation {𝑝1,𝑝2, ...,𝑝𝑚,𝑑𝑡 }. The probability values
{𝑝1,𝑝2,...,𝑝𝑚} were the model confidence values produced by the

target predictionmodel over time. The integer𝑚was thememory

size of the agent. The list acted like a first-in-first-out queuewhere

𝑝𝑚 represented the most recent confidence value provided by the

prediction model and 𝑝1 represented the least recent. The float 𝑑𝑡
recorded the last timestamp when a suggestion was displayed.
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Figure 6: The trial generation process for the mock-up target prediction model. (A) The model first computes the trial length
based on the log-normal distribution found in Study 1 for task completion time. (B) Themodel forms a sigmoid function of task
progression with respect to prediction accuracy. (C) The sigmoid function varies within a predefined region (the dashed lines
indicate the 95% CI). (D) Themodel adds deviations (i.e., spikes and dips) to the trial.

Figure 7: The expected gain for maximizing time savings
for participants (y-axis) when using different confidence
thresholds (x-axis) based on the validation dataset. The unit
of gain is a timestamp, where the time saved in seconds
equals 0.02 · timestamps. Dashed lines represent𝑚𝑒𝑎𝑛±𝑠𝑡𝑑 .

• Action: The agent could take the following two actions based on
the observation {𝑑𝑖𝑠𝑝𝑙𝑎𝑦,𝑛𝑜𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑦}. The 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 action repre-

sented displaying an intelligent suggestion, so 𝑑𝑡 was updated to

the current timestamp 𝑡 . The𝑛𝑜𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 actionhid the suggestion.

• Reward: Three reward settings were used to train the RL agents.
The first was 𝑟1, where 𝑟

𝑡
1
=Gain(𝑡) if a suggestion was displayed

at 𝑡 , otherwise𝑟𝑡
1
=0. The second reward setting,𝑟2, sought to solve

the reward sparsity issue in 𝑟1. Specifically, reward shaping was

performed when the suggestion wasn’t displayed: 𝑟𝑡
2
= Gain(𝑡)

if a suggestion was displayed at 𝑡 , otherwise 𝑟𝑡
2
= −𝑘 · 𝑝𝑚 . We

used a hyper-parameter 𝑘 to penalize the action of not displaying

any suggestion. An agent received more penalties if it did not

display a suggestion when the model confidence was high (𝑝𝑚).

The third reward 𝑟𝑡
3
also leveraged the benefit of dense rewards,

but removed the agents’ reliance on the penalty factor 𝑘 , which

may have negative impacts on true reward maximization. Here,

𝑟𝑡
3
=Gain(𝑡)−𝑟𝑡−1

3
(where 𝑟0

3
=0) at a timestamp 𝑡 . This essentially

rewarded the agent based on how good it performed on a particu-

larly timestamp t, by computing the contribution of agent’s action

at t towards the gain. More details can be found in Appendix B.1.4.

• Episode End Criteria: The current episode ended if 𝑡 was larger
than the maximum length of the trial𝑇 , or 𝑑𝑡 was larger than 0

(which meant a suggestion was displayed).

• Initialization: 𝑝𝑚 was initialized to the first confidence value pro-

duced by the target prediction model, while all other probability

values were set to 0. 𝑑𝑡 was initialized to 0.

Table 3: Testing results of RL regarding regarding the dense
target selection (DTS) task and the textmatching (TM) task.

Task Strategy Time Saved % Improved

DTS PPO-MLP 0.4087s (0.3285s) 39.87%

DTS ACER-LSTM 0.4084s (0.3362s) 39.77%

TM PPO-MLP 1.6050s (1.7877s) 257.30%

TM ACER-LSTM 1.5671s (1.7328s) 248.86%

Task Strategy Usage% % Improved

TM PPO-MLP 87.31% (18.05%) 51.76%

6.3.2 Methodology. OpenAI Gym [16] and Stable Baselines [34, 56]

were used to build and train the RL agents. Our experimentation

demonstrated that PPO2 with MLP policies was a lightweight and

effective solution and ACER with LSTMwas powerful but may take

longer to train. We thus used these two strategies for final bench-

marking. Since training these RL agents consumes a lot of resources,

for demonstration purposes, we only optimized agents for the time

saving objective and one agent for the usage percentage objective.

More training details can be found in Appendix B.1.5.

6.3.3 Results. The results showed that RL agents could provide

around 40% of improvement in the dense target selection task and

260% of improvement in the text matching task as compared to

Heuristic Thresholding (Table 3). Compared to the results from Sec-

tion2,OTandRL led tovery similar performance improvement in the

two taskscenarios;whileRLdidproducedynamic thresholds for each

trial. We will return to this in later sections (Section 7.2.3 and 8.2).

6.4 Simulation 3: Multi-Objective Optimization
So far, our approach focused on optimizing a single objective e.g.,

time saved or usage percentage. However, designers may need to

find optimal decisions in the presence of trade-offs between two or

more conflicting objectives (e.g., minimizing task completion time

and maximizing accuracy) in many applications. Multi-objective

optimization is useful in such settings, when more than one objec-

tive function need to be optimized simultaneously. Therefore, we

explored Pareto Frontier-based multi-objective optimization tech-

nique [45, 48], which generates a set of acceptable trade-off optimal

9
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Figure 8:Optimizingboth the time saved forparticipants and
the suggestion usage percentage with Pareto Frontier-based
multi-objective optimization.

solutions, to optimize the two objectives—time saved and suggestion

usage percentage simultaneously.

A given condition is called Pareto optimal if one dimension (i.e.,

objective) could not be improved without worsening other dimen-

sions (i.e., objectives). In our case, we computed the gain of timing

saving and usage percentage for each condition 𝑞𝑡 and plotted them

on a two dimensional xy-plane (Figure 8). A Pareto optimal point

was identified if there was no point on the plane that was better

in both x and y dimensions. The corresponding threshold 𝑞𝑡 of the

point was then retraced.

Following the above method, we identified thresholds that could

optimize both objectives simultaneously. Thirty-two Pareto optimal

values were identified for the dense target selection task (𝑇ℎ𝑟𝑒𝑠 =

0.47,0.50− 0.78,0.80− 0.81) and three Pareto optimal values were

identified for the text matching task (𝑇ℎ𝑟𝑒𝑠 =0.96−0.98). The results
indicated that the time saved and usage percentage objectives were

somewhat conflicting in the pointing task but not in the text match-

ing task. Thus COBO can help practitioners who want to trade-off

various optimization objectives.

6.5 Summary
These simulation experiments demonstrated different facets of op-

timization strategies using COBO. The experiments showed how,

theoretically, OT and RL were both effective at determining the op-

timal timings at which to show an intelligent suggestion, while the

performance difference between the two strategies was small. We

found that for the dense target selection task, an intelligent sugges-

tion should be displayedwhen themodel confidence reached 0.47 for

optimizing time saved for users and 0.81 for optimizing suggestion

usage percentage. For the text matching task, an intelligent sugges-

tion should be displayedwhen themodel confidence reached around

0.96-0.98 for optimizing both objectives.

It was also found that a non-optimized threshold could lead to

much worse performance (e.g., 1 second longer in task completion

time and a 30% smaller suggestion usage percentage in the text

matching task) compared to an optimized strategy based on COBO.

Not all intelligent suggestions were shown to be beneficial, however.

Displaying suggestions early in the text matching task lead to a

negative gain in terms of task completion time.

7 STUDY 3 - VALIDATION
The third studyconsistedof twoempirical user experimentsofCOBO

because of the highnumber of conditions. Thefirst one compared the

time saved and suggestion usage % for Optimal Thresholding (OT)

andHeuristic Thresholding (HT), finding that OT saved participants

more time and led to a higher suggestion usage percentage in the

text matching task. The second experiment compared OT and RL

strategies and found that OT and RL lead to similar performance.

7.1 Validation 1 - Optimal
Thresholding vs. Heuristic Thresholding

The goal of validation experiment 1 was to empirically verify the

effectiveness of Optimal Thresholding in comparison with Heuristic

Thresholding. We also included a No Suggestion condition to help

contextualize the impact of suggestion conditions relative to when

the interface offers no suggestions.

7.1.1 Participants and Apparatus. Another 26 participants were re-
cruited (i.e., fourteenwomen, elevenmen, andonenon-binary).Their

ages ranged from 22 to 65 (𝑚𝑒𝑎𝑛=36.1,𝑠𝑡𝑑 =12.8). All participants

had normal or corrected-to-normal vision and were right-handed.

23 participants had used VR devices 0-5 hours per week, two used

5-10 hours per week, and one had never used any VR device before.

The same apparatus was used as in the first study.

7.1.2 Methodology. Participants experienced both task scenarios
(i.e., dense target selection and text matching). There were four con-

ditions (Strategy) for the dense target selection task: optimized

thresholds for time saved (TS, 𝑡ℎ𝑟𝑒𝑠 =0.47), optimized thresholds for

suggestion usage percentage (UP, 𝑡ℎ𝑟𝑒𝑠 =0.81, which was close to
HT 𝑡ℎ𝑟𝑒𝑠 = 0.85 from a selection task [20]), balanced optimization

for both objectives (BA, 𝑡ℎ𝑟𝑒𝑠 =0.64), and no intelligent suggestions
(NS). Similar to Study 2, we used highlighting suggestions for the

dense target selection task.

There were three conditions (Strategy) for the text matching

task: balanced optimization based on OT (BA, 𝑡ℎ𝑟𝑒𝑠 = 0.97), HT

baseline (HT, 𝑡ℎ𝑟𝑒𝑠 =0.50 from a search-heavy, mentally-demanding

task[36]), andno intelligent suggestions (NS).The timesaved (𝑡ℎ𝑟𝑒𝑠 =

0.98), suggestion usage percentage (𝑡ℎ𝑟𝑒𝑠 = 0.96), and balanced

(𝑡ℎ𝑟𝑒𝑠 = 0.97) optimization conditions were combined in this task

as the thresholds were very close. We used pop-up notifications

for the text matching task. This design enabled us to investigate

multiple factors while keeping the study size reasonable at seven

experimental conditions.

48 trials of predictionswere generated for each task scenario using

the mock-up target prediction model from Study 2. Each trial con-

tained the probability of the model making a correct suggestion (i.e.,

model confidence) over a fixed period of time. The different thresh-

olding strategies were then applied to each trial to decide the timing

of showing a suggestion. The 48 trialswere fixed across conditions to

minimize the variances caused by the target prediction model. The

average global centerline of the 48 trials followed a sigmoid curve.

The final correctness of the prediction (i.e., a predicted candidate

which participants visually perceived) was determined based on

the confidence value when displaying a suggestion. For example, if

a strategy decided to display the suggestion when the confidence

value was 0.6, the final prediction then had 60% chance to be correct.

Among the 48 trials, the first 3 trials were treated as practice trials.

In total, 8190 trials were recorded (= 26 participants × 7 conditions

× 45 repetitions) during this experiment.
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A similar experimental procedure was employed as the first study.

However, in this study, after completing each condition, participants

were asked to complete a questionnaire that had three 7-point Likert

scale questions probing easement, physical workload, and mental

workload. The order of the task scenarios was randomized and the

conditions within the scenarios were counterbalanced. The order of

the formal trials were also randomized, however, the practice trials

were always the same.

7.1.3 Analysis and Results. While data was initially collected for 26

participants, P1, P14, P19, and P26 were excluded as they never used

intelligent suggestions in one or both of the tasks. The trials where

participants had finished before the suggestion appeared (i.e., 169

(3.61%) dense target selection trials and 518 (14.76%) text matching

tasks) were removed from the dataset. Because a mock-up target

prediction model was used, there could have been trials where par-

ticipants finished earlier than the pre-determined time period. Thus,

only trials where an intelligent suggestion was displayed were con-

sidered.We also removed outliers (𝑚𝑒𝑎𝑛±3𝑠𝑡𝑑) (i.e., 45 (0.96%) dense
target selection trials and 42 (1.20%) text matching tasks). These pre-

processing steps resulted in 6156 trials remaining for analysis (i.e.,

3746 trials for dense target selection and 2410 trials for text match-

ing). The trials were later averaged across participant and condition.

The overall accuracy was 93.14% for the dense target selection task

and 98.98% for the text matching task.

For the dense target selection task, a linear mixed model with arc-

sinh transformation (as determined by the bestNormalize package)
suggested that Strategy had a significant main effect on task com-

pletion time (𝐹 =5.02,𝑝 = .003). A post-hoc analysis with Bonferroni

correction showed that the completion time in NS was significantly
longer than BA (𝑝 = .002), and marginally significant longer than TS
(𝑝 = .084) and UP (𝑝 = .135) (all other 𝑝 > .887). Another linear mixed

modelwith exp transformation indicated that Strategy had a signif-

icant main effect on suggestion usage percentage (𝐹 =65.69,𝑝 < .001).

Post-hoc analysis suggested that usage percentages of UP (𝑝 =0.056)

and BA (𝑝 =0.140) were marginally significant higher than TS. See
Figure 9A-B for an overview.

For the text matching task, a linear mixed model with sqrt trans-

formation suggested that Strategy had a significant main effect

on task completion time (𝐹 = 59.79,𝑝 < .001). A post-hoc analysis

showed that participants performed significantly faster in BA than

HT (𝑝 < .001) and NS (𝑝 < .001). HT was also found to have a sig-

nificantly shorter task completion time than NS (𝑝 < .001). Another

linear mixed model with exp transformation suggested that Strat-

egy had a significant main effect on suggestion usage percentage

(𝐹 = 420.45,𝑝 < .001). A post-hoc analysis indicated that BA had a

significantly higher suggestion usage percentage than HT (𝑝 < .001).

See Figure 9C-D for an overview.

For the subjective questions, pair-wise comparisons (with Bon-

ferroni correction) identified that BA led to lower mental workload

(𝑝 = .012), and were possibly easier to use (𝑝 = .053), thanNS in the
textmatching task. This suggests that using an intelligent suggestion

could reduce workload and improve user experience.

7.1.4 Discussion. The empirical results demonstrated the effective-

ness of theCOBOoptimization framework for the textmatching task.

As expected from the theoretical evaluation, the optimized condition

(BA) led to shorter task completion times and higher suggestion

usage % than the baseline conditions (HT and NS).
The benefits due toCOBOweremore obvious in the textmatching

task compared to the dense target selection, mainly because the

dense task was very rapid and, as such, it was more difficult to have

substantial differences in suggestion timings (thus their effect on

time saved for users and suggestion usage percentage). However,

the patterns across the two tasks were consistent. The significantly

higher suggestion usage in text matching, in particular, could be

impactful in lowering user’s effort, which is suggested in the lower

mental load scores of the balanced optimization.

7.2 Validation 2 - Optimal Thresholding vs. RL
The primary goal of the validation experiment 2 was to compare

Optimal Thresholding (OT) vs. RL strategies for time saved and sug-

gestion usage percentage. Based on the findings from validation 1,

in this study, only the text matching task was used, as it was more

likely to lead to verifiable performance differences in an empirical

user study than the dense target selection task.

7.2.1 Participants and Apparatus. 12 participants (6 women, 5 men,

and 1 non-binary) who had participated in the first validation study

were recruited for the second validation study. Since the time inter-

val between validation experiment 1 and 2 was more than a week

and the strategy differences were hard to verify by seeing only the

suggestion itself, it was presumed to be reasonable to reuse partici-

pants. Participants’ age ranged from 22 to 63 (𝑚𝑒𝑎𝑛=35.9,𝑠𝑡𝑑 =10.9).

The same apparatus were used as in validation study 1.

7.2.2 Methodology. The study employed a 2×2within-subject de-
sign: Objective (time saved and suggestion usage percentage) ×
Strategy (OT and RL). Based on Study 2, 𝑡ℎ𝑟𝑒𝑠 =0.98was used for

time saved optimization and 𝑡ℎ𝑟𝑒𝑠 = 0.96was used for suggestion

usage percentage optimization. The PPO-MLP agent from Study 2

was used.

The same 48 trials were used to generate the corresponding sug-

gestion timing in each condition, and a similar study protocol was

employed as validation study 1. In total, 2160 trials were collected

(= 12 participants × 2 objectives × 2 strategies × 45 repetitions).

7.2.3 Analysis, Results, and Discussion. After removing outliers

(𝑚𝑒𝑎𝑛±3𝑠𝑡𝑑 , 11 trials, 0.51%) and trials where participants finished
before the suggestion appeared (709 trials, 32.8%), 1440 trials re-

mained for analysis. The overall accuracy was 99.59%.

A linear mixed model with sqrt transformation was not able to

identify that Strategy had a significant main effect on task com-

pletion time (𝐹 = 0.18,𝑝 = .674). Another linear mixed model with

Yeo-Johnson transformation was not able to identify that strat-

egy had a significant main effect on suggestion usage percentage

(𝐹 =0.74,𝑝 = .397). Strategywas not shown to have significantmain

effects on any of the subjective scales. In summary, our results did

not find any significant differences between OT and RL that lead to

identifiable differences in the optimization metrics (Figure 10A-B).

We were further interested to see whether RL proposed different

suggestion timings than OT in the 48 trials. For the time saved op-

timization, RL and OT led to a similar suggestion timing (Δ < 0.1s)

in most cases (72.9%). For 16.8% of the cases, the difference between

themwas>0.5s. For usagepercentage optimization, therewere 68.8%
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Figure 9: Results of average task completion time and suggestion usage percentage in the first validation experiment of Study 3.
Thefourconditions in thedense target selection taskwere timesavedoptimization (TS),usagepercentageoptimization (UP), bal-
ancedoptimization(BA),andnosuggestion(NS).Thethreeconditions inthetextmatchingtaskwerebalancedoptimization(BA),
Heuristic Thresholding (HT), and no suggestion (NS). The error bars represent𝑚𝑒𝑎𝑛±𝑠𝑡𝑑 . **means 𝑝 < .01 and ***means 𝑝 < .001.

Figure 10: Results of average task completion time (A) and suggestion usage percentage (B) in the second validation experiment
of Study 3. The four conditions were usage percentage optimization with RL (UP-RL) and Optimal Thresholding (UP-OT) and
time saved optimization with RL (TS-RL) and Optimal Thresholding (TS-OT). The error bars represent𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑 . (C) and (D)
show example trials where RL and Optimal Thresholding (OT) yielded noticeably different suggestion timings. On average, RL
saved 0.31s less in (C) and 1.79smore in (D) than OT.

trials where RL and OT led to a similar suggestion timing (Δ < 0.1s)

and 8.3% trials that resulted in difference > 0.5s. In the trials with dif-

ference >0.5s, RL always attempted to display an earlier suggestion

to save more time for users. On average, RL showed the suggestions

0.79s (𝑠𝑡𝑑.=0.38s) earlier in these trials as compared to OT.

Figure 10C-D demonstrate two examples wherein RL finds differ-

ent thresholds than OT. RL strategy seems to be observing the trend

of the model confidence curve and displaying a suggestion once

the curve is likely to plateau in the near future. Figure 10C shows

a trial where RL saved 0.31 less than OT on average, and Figure 10D

shows a trial where RL saved 1.79s more. Thus, RL is certainly able

to learn a strategy that results in dynamic thresholds that match OT

performance on average, but it remains to be seen if/when RLmay

be able to outperform optimal thresholds.

8 DISCUSSION
We’ve conducted a series of three studies that demonstrated the

theoretical and empirical effectiveness of our COBO (cost-benefit

optimization) framework for suggestion timing optimization. In this

section, we further reflect on our experiences in terms of the cost

and benefit quantification of the two optimization objectives and the

strength of RL as an optimization strategy as compared to Optimal

Thresholding. We also discuss the generalizability of the framework

to other applications and the limitations of our studies.

8.1 Optimization Objectives
Our work demonstrates a successful optimization of two objectives:

time saved by users and suggestion usage percentage. The COBO

framework is designed to help optimize various objectives, either

individually or simultaneously, as long as a cost and benefit quan-

tification method can be determined. We used data collected from

participants (Study 1) to construct cost and benefit functions with

variables such as response times, response rates, and delayed times.

The validation studies indicated that the constructed cost and benefit

functions were good approximations of the ground truth.

The time savings in our case, even though significant, are small

especially in the dense target selection task. However, existing work

has shown that users prefer intelligent suggestions despite negative

time costs [54] because theywere considered less physically demand-

ing and effortful. The fact motivated us to quantify the benefit of

intelligent suggestions beyond performance improvements. While

usage percentage is an effective proxy that assumes that higher sug-

gestion usage is always beneficial for a user to lower their interaction

friction [38], a highly promising avenue for future work is in opti-

mizing directly for effort, physical and mental-demand especially
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as we become better at real-time estimations of quantities like arm

fatigue [18] and satisfaction [24, 53].

Forsimplicity,weomittedsomerareconditionsduringcost-benefit

quantification. For example, we excluded the trials where users mis-

takenly triggered the selection of an incorrect suggestion. Such

instances were very uncommon (0.4% overall) and did not signifi-

cantly impact the suggestion usage percentage or the time cost of

an incorrect suggestion. However, future endeavors can extend our

framework to consider mistaken triggering of an incorrect sugges-

tion especially if those instances are not rare and/or if they require a

costly recovery from the mistake [12, 40]. One simple way might be

to considermodeling this as a constant time cost (e.g., recovery time).

8.2 RL as an Optimization Strategy
We found that RLwas able to learn a successful strategy and produce

dynamic thresholds across trials. However, RL’s dynamic thresholds

weren’t able to outperform the single optimal threshold on average

in our simulation and validation study.

As we report, there were a small, but significant percentage of

trials where RL’s suggestion timing differed by >0.5s compared to

OT. However, we did not find any big discernible patterns in these

trials compared to others. It will be worth investigating task con-

texts where the percentage of such trials is higher. Another reason

for RL’s similar performance to OT might be that the room of im-

provement for RL was small, as Optimal Thresholding (OT) already

performed very well. The analysis demonstrated that even the the-

oretical maximum of a perfect agent (i.e., agent that maximizes the

gain by knowing the whole trial profile) can lead to no larger than

0.18s and a 4.3% improvement over OT in task completion time and

suggestion usage percentage, respectively, with our dataset. It will

be interesting to see if there are contexts where OT does not achieve

performance close to the theoretical maximum.

We can propose two variables to explore here that may help di-

versify our task context. First, is to look at trials with durations that

are much more variable. Looking at the validation study data more

closely, we found a weak correlation between the time-saving differ-

ences (𝑅𝐿−𝑂𝑇 ) and trial length (𝑅2 = 0.10) which indicated that the

RL agent saved more time than OT in longer duration trials. Second,

is to look at target predictionmodels that are not sigmoidal in nature

(as an example, models that start with a high prior confidence using

earlier user activity), and may follow patterns that cannot be easily

captured using a single OT.

RL may also prove to be useful in scenarios where an interface

wants to showmore than one intelligent suggestion and the sugges-

tionsgetupdatedbasedonusers’ behavior. Itmightbehard todirectly

apply OT in these scenarios. Also, in case a designer wants to enable

different suggestion types within the same task (example, both high-

lighting and pop-up notification), an RL agent could choose themost

appropriate suggestion type based on the gain of those options at dif-

ferent timings.An interestingareaof exploration is the long-termuse

of such intelligent suggestion interfaces.Ausermay formanexpecta-

tionofhowwell themodelperforms,whichcan in turn influence their

responsebehavior, thuschanging thecost-benefitquantificationover

time. An online RL agent may also prove useful in such cases.

8.3 Applications
This research has demonstrated the application of COBO in two

task scenarios (dense target selection and text matching) and two

objectives (minimizinguser task completion time andmaximizing in-

telligent suggestion usage). The two tasks and suggestion typeswere

intentionally chosen to be representative of popular use cases. The

dense target selection task aims to simulate physically-demanding

taskswhere users need to select objects in cluttered environment [46,

64], and the text matching task mimics real-world search-heavy sce-

narios suchas searching for ingredients fromareceipt [25, 63].Object

highlightingandpop-upnotificationarebothcommonvisualizations

to inform users about system events [57]. Additionally, in Appen-

dix B.3, we also present results on successfully applying COBO on

a dataset from the literature which records hand movement trajecto-

ries when reaching virtual objects at different locations. We further

envision COBO being extensible to other tasks and facilitation.

8.3.1 Extending to other tasks. The framework can be retrained

for other applications that want to leverage intelligent predictions

using target prediction models that rely on hand, head, gaze, and

other contextual information [31, 70] in selection tasks such as point-

ing, visual search, and text-entry. By following the COBO frame-

work, practitioners may choose different models, objectives, and

cost-benefit quantification methods which are tailored for their ap-

plications. Overall, based on our user-centric computational frame-

work, designers are more likely to provide intelligent suggestions

that support their intended goals, rather than leading to unexpected

outcomes [50, 54].

8.3.2 Extending to other facilitation. COBO’s framework can also be

extended to facilitate techniques other than intelligent suggestions

such as expanding [44] or auto-selecting [1, 4] a predicted target, as

well as formore thanone suggestions simultaneously or sequentially.

8.4 Target PredictionModel
The current research builds on certain assumptions to simplify the

complex problem space. One assumption is the use of a mock-up tar-

get prediction model, as we wanted to simulate a highly representa-

tivepredictionmodel, rather thanchoosingoneat random.Therefore,

wecarriedouta literature survey toextract thecommonalities among

prediction models and then created a simulation from those com-

monalities (Section 6.1).However, our inspirationswere fromhuman

behaviormodels of target reaching [20] and searching [36]where the

modelpredictionaccuracywas typicallyhighduring the later stageof

the task because the selection indicator (e.g., hand or gaze point) was

“approaching” or “almost on” the target and the user was just “fine-

tuning” the selection of the target. For example, in the text matching

task, we imagined that the gaze direction would reach the targeted

object way before the controller-based manual pointing selection

(i.e., the model has very high confidence based on gaze features no

matter the position of the hand pointer), as Huang et al. [36] could

correctly anticipate the intended object through gaze sequences 1.8s

beforea speech request.Weacknowledge that thereareother typesof

models thatmay not have such rich features. Futurework can deploy

this framework to any prediction model to test it on new use cases.

This, however, did mean that the intelligent suggestions were not

delivered dynamically based on a user’s behaviour. For experimental
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control, it was important that this be the case while developing and

validating the COBO framework. However, future research should

investigate how the framework responds to a real prediction model.

One additional consideration of the current approach is that it re-

quires a dataset of model confidence curves to calculate user-centric

costs and benefits over time. In a real scenariowhere a designer has a

target prediction model and its training dataset, the training dataset

should contain trials with necessary features (e.g., user behavior

data, completion times) so the designer can directly use those for

confidence curve generation and cost-benefit computation (see Ap-

pendix B.3 for an example). In a condition where the feature dataset

is missing, another possible solution is to apply models to simulate

user behavior. During the planning phase of this research, our initial

idea was to use existing computational models (e.g., minimum jerk

model) togenerate a largevolumeofuser behaviordata.However,we

encountered two challenges. First, we did not knowhowuserswould

behave according to correct/incorrect suggestions that appeared at

different timings (so it was hard to incorporate this element into

the model). Second, a user behavioral model for the text matching

scenario is still largely underexplored (unlike bio-mechanical behav-

ior modeling for pointing and reaching as in Cheema et al. [18] and

Fischer et al. [23]). Therefore, we decided to collect new data from

real users. However, we do believe using model-generated datasets

for user cost-benefit quantification can be helpful in the future with

more advances in the field.

9 CONCLUSION
Predictive systems are helpful ways to lower input friction and im-

prove user experiences in current VR/AR systems [38]. Specifically,

selection facilitation techniques that leverage target predictionmod-

els can alleviate the need for manual pointing and visual search,

and can potentially lead to quicker, easier, and more comfortable

interaction. While current target prediction models only offerwhich
target a user intends to select, we built a framework (COBO) that

helps determinewhen an intelligent suggestion should be displayed
to maximize its benefits.

COBO is a computational framework that determines the optimal

timing of an intelligent suggestion for each interaction based onuser-

centric costs and benefits. In a set of studies, we demonstrated that

COBO is effective at determining the optimal timing of intelligent

suggestions. The first study focused on measuring and quantifying

the costs and benefits of an intelligent suggestion displayed at dif-

ferent timings when trying to satisfy two objectives (i.e., time saved

for users and suggestion usage percentage) during two tasks (i.e.,

dense target selection and text matching). We then run simulations

with two optimization strategies (i.e., Optimal Thresholding and

RL) for single- and multi-objective optimizations. We found both

Optimal Thresholding and RL led to better performance compared

to heuristic-based thresholding approaches. For example, both op-

timization strategies led to around 40% improvement in terms of

task completion time in the dense target selection task and 260%

improvement in the text matching task. We also demonstrated the

effectiveness of COBO for multi-objective optimization. The third

study contained two validation experiments that compared Optimal

Thresholding, RL, heuristic-based thresholding, and no suggestion

conditions. The experimental results suggested thatCOBO-based op-

timization strategies led to shorter task completion times and higher

suggestion usage percentages, and were preferred by participants

in the text matching task when compared to baselines.

From both theoretical and empirical perspectives, we showed that

an optimized strategy based on COBO can perform significantly bet-

ter than non-optimized heuristic-based approaches in maximizing

the time saved by users and increasing suggestion usage percentages.

Overall, we envision the introduced frameworkwill unlock effective

intelligent suggestions, which will benefit future predictive systems.
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A STUDY 1 - DATACOLLECTION
A.1 Task Scenarios
Two task scenarios, representative of common interaction tasks that

are effortful to perform, were employed. The dense target selec-

tion task represented a manually-intensive task, where participants

needed toselect a smallobject locatedat thecenterofacluster [46, 64].

The text matching task served as a mentally-demanding task, where

participantsneededtofindandselectanobjectwith text thatmatched

a target text. This task simulated real-world, search-heavy scenarios

like searching for ingredients from a receipt, finding street names

on a map, or browsing through a menu [52].

A.1.1 Dense Target Selection Task. This task was inspired by exist-
ing literature on small and dense target selection [46, 64]. The goal

was to select the earth icon at the center of a planet cluster (Figure 3,

left). The cluster was surrounded by other planet icons, which were

randomly sized and distributed to add noise to the task environment.

This setting required participants to aimprecisely [64] and simulated

scenarios where participants need to select objects in a cluttered

virtual scene (e.g., select a keychain in a messy room).

The angular size of the target was set to 1
◦
, whichwas determined

by previous research to be sufficiently challenging [70]. The angular

distance, or required movement amplitude, was fixed to 90
◦
, and the

target was generated in a predefined list of locations that were no

more than 30
◦
away from thehorizontal plane. This target placement

required participants to rotate their heads to find the out-of-view

object, which added physical workload, without requiring that they

overextend their neck. The distractors that were located directly
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adjacent to the target were the same size as the target, while others

were randomly sized between 0.6◦ and 2◦.
Participants started the task by pointing at a button at a fixed cen-

ter position. A blue 3D arrow then appeared to indicate the location

of the target. The arrow was designed to minimize search time in

this task [69]. Participants then followed the direction of the arrow

to point at the target through the right-hand controller and pressed

the trigger to confirm their selection.

A.1.2 Text Matching Task. This task was designed to require par-
ticipants to perform a difficult visual search (mentally-demanding)

[25, 63]. Participants were required to find a target text string that

matched a prompt (Figure 3, right) in a 6×7 grid of texts strings.
The angular distance between the candidateswas 10

◦
horizontally

and 2.8◦ vertically to make sure all objects were located within field

of view of participants to minimize their physical workload (e.g.,

turning their bodies to search for the target). The object radius was

set to 1.5◦ and all objects were placed on a spherical plane.
Participants started the task by memorizing the target string and

selecting a button at a fixed center position. All candidate strings

then appeared with the goal text reminder at the top of the grid. To

complete a task trial, participants pointed at the target icon using

the controller and pressed the trigger to select it.

A.2 SuggestionMethod
Two suggestionmethods were used in the study—a highlighting sug-

gestion and a pop-up suggestion. With the highlighting suggestion,

a blinking fluorescent outline was displayed around the suggested

object (Figure 4 left). A symbol of Button A also appeared at a pre-

determined, unoccluded position close to the indicated object to

depict that the object could be selected by pressing the Button A on

theTouch controller. Participants could also cancel the suggestion by

tilting the joystick to the right. Note that the highlighting suggestion

was in-situ, so it remained at the object location without following

the direction participants were looking.

With the pop-up notification suggestion, a suggestion window

appeared at the bottomof the participant’s current viewing direction

(Figure 4 right) [57]. The suggestion presented either a predicted

icon in the dense target selection task or a text string in the text

matching task. When participants rotated their viewing direction,

the pop-up notification followed the viewing direction using hor-

izontal linear interpolation. Linear interpolation was not applied in

the vertical dimension to avoid the suggestion being “stuck” on the

head-mounted display, which may have caused visual discomfort.

Like the highlighting suggestion, participants could quickly access

the suggested object via the Button A or discard the suggestion by

tilting the joystick to the right.

A.3 Example Data Trials
We show example data trials collected in session 2 in Figure 11.

A.4 Results - Session 2
Figure 12 shows the average response times and delayed times for

the suggestion methods and task types. We performed significance

tests with linear mixed models on response time and delayed time.

A.4.1 Response Time. Response time was defined the time elapsed

between the appearance of a correct intelligent suggestion and a par-

ticipant’s selectionof that suggestion.First, theYeo-Johnsontransfor-

mation, as chosen by the bestNormalize package in R, was applied
to normalize the data. A linearmixedmodelwas thenused to identify

whether different task types and suggestionmethods lead todifferent

response times across various suggestion timings.We set Task Type,

SuggestionMethod, and Suggestion Timing as fixed factors and

Participant as a random factor. The linear mixed model indicated

that there were interaction effects between SuggestionMethod

× Suggestion Timing (𝐹 = 125.18,𝑝 < .001) and Task Type × Sug-

gestion Timing (𝐹 =49.47,𝑝 < .001). As Task Type and Suggestion

Method led to different response times across Suggestion Timing,

we used multivariate adaptive regression splines (MARS) to model

the relationships between suggestion timing and response time.

A.4.2 Response Rate. Response rate was defined as the likelihood
that participants accepted a correct suggestion. Significance testing

was not applied because the “rate” variable was only meaningful if

we considered multiple data points.

A.4.3 Delayed Time. Delayed time was the time delay that was

incurred due to incorrect suggestions. Similar to response time, an

arcsinh transformationas suggestedby thebestNormalizepackage,
was applied and a linearmixedmodelwas used to identify significant

interaction effects between Task Type and Suggestion Method

with regard to Suggestion Timing. The results indicated a signif-

icant effect of Task Type × Suggestion Timing (𝐹 =5.30,𝑝 = .021),

but not SuggestionMethod × Suggestion Timing (𝐹 =1.24,𝑝 =

0.267) nor SuggestionMethod×TaskType× SuggestionTiming

(𝐹 =0.01,𝑝 = .928).

B STUDY 2 - SIMULATION
B.1 Target PredictionModel Mock-up
B.1.1 Target Prediction Model Observations. A selection predic-

tion model based on the available data [20] was replicated and we

observed how the predicted probability of the most likely object

changed as the task progressed. Further, we drew inspiration from

existing researchongaze-based target prediction [15, 36]. From these

explorations, we made the following observations:

• The global centerline of model confidence over time (i.e., the av-

erage trendacross all trials) seems tobe a sigmoid-like curve [14,

15, 20, 74]. Intuitively, model confidence accelerates from a low

point and becomes steady as it approaches an asymptote.

• By replicating [20] and observing results in [36], we found that

while the local centerline of themodel confidence value (i.e., the

general trend of each trial) seems to roughly follow a sigmoid-

like curve, it can deviate from the global centerline. While the

local centerline can still be approximated by a sigmoid curve,

the speed of increase can differ on each trial.

• The final confidence curve of each trial, rather than the general

trend, contains seemingly randomly-distributed deviations (i.e.,

spikes and dips) from the local centerline. The evidence was

found by replicating [20] and observing results in [36].

B.1.2 Mock-up Prediction Model Generation. Based on these obser-
vations, the following trial generation process was formulated for
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Figure 11: Example data trials from session 2.

Figure 12: Average response times and delayed times for the
suggestion methods (highlighting and pop-up notification)
and task types (dense target selection and text matching).
The error bars represent𝑚𝑒𝑎𝑛±𝑠𝑡𝑑 .

our mock-up prediction model. Our goal was to produce reasonable

model confidence curves that mimic an actual prediction model.

• When starting to generate a data trial, the model first samples

a trial length 𝑡𝑚𝑎𝑥 based on the log-normal distribution regard-

ing user task completion time found in Study 1 (Figure 6A). This

sampling approach allows the final dataset to approximate the

distribution of user task completion time.

• Themodel thengenerates aglobal centerlinebasedona sigmoid

function𝑦1=𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥,𝑘,𝑥0,𝑢,𝑙) where 𝑘 is the logistic growth

rate, 𝑥0 is the sigmoid’s midpoint,𝑢 is the upper bound, and 𝑙

is the lower bound (Equation 7). This simulates the observation

that the global centerline follows a sigmoid curve in an actual

prediction model (Figure 6B).

𝑦1=
𝑢−𝑙

1+𝑒−𝑘 (𝑥−𝑥0)
+𝑙 (7)

• To simulate the variances in a local centerline, the model gener-

ates a Bell curve𝑦2=𝑏𝑒𝑙𝑙 (𝑥,`,𝜎) (Equation 8) to define the area
of deviation (see Figure 6C). The distance between the local cen-

terline𝑦3 and the global centerline is probabilistically sampled

fromaGaussiandistribution followingEquation9,where `𝑟 and

𝜎𝑟 are thepredefinedmeanandstandarddeviationof aGaussian

distribution. By generating random numbers from a Gaussian

distribution (with random.gauss), it is more likely that a local

centerline is close to the global centerline than further away.

𝑦2=
1

𝜎
√
2𝜋

𝑒
−(𝑥−`)2

2𝜎2
(8)

𝑦3=𝑦1+𝑦2 ·random.gauss(`𝑟 ,𝜎𝑟 ) (9)

• The final step of the mock-up model is to generate spikes and

dips based on the local centerline. To achieve this, the model

uses a pre-determined probability 𝑗𝑝 to represent the likelihood

of jumping to another randomly generated local centerline

(new𝑦3) at a particular timestamp 𝑡 . The model goes through

all timestamps in the trial and modifies the curve depending on

it a jump will occur. The resulting curve preserves the property

of previous steps: by averaging all generated trials, the center-

line still follows a sigmoid function and the local centerline

deviates within a predefined region. Themodel further corrects

all probabilities larger than 1 to 1 and smaller than 0 to 0. A

sample of a generated trial can be found in Figure 6D.

B.1.3 Dataset Generation. We pre-defined the parameters for the

trial generation in later analyses. For the global centerline-related

parameters, we set logistic growth rate 𝑘 = 2, sigmoid’s midpoint

𝑥0 = 𝑡𝑚𝑎𝑥/2, upper bound 𝑢 = 1, lower bound 𝑙 = 0. This simulated

a model that knew little information when users started a trial and

increased its confidence over time until it reached an almost perfect

understandingwhen users finished the trial, similar to the prediction

models in [20] and [36].Regarding the local centerline-relatedparam-

eters, we set the bell curvemean `=𝑡𝑚𝑎𝑥/1.9 and standard deviation
𝜎 =1. We also set the Gaussian distributionmean `𝑟 =0 and standard

deviation𝜎𝑟 =1. The random jump rate 𝑗𝑝 was fixed at 0.05. The final

results yielded visually similar curves as in the literature [20, 36].

The frame rate was determined to be 50 (0.02 seconds per frame).

B.1.4 RL Reward Settings. Three reward settings were used to train
the RL agents. The first reward settingwas 𝑟1, where 𝑟

𝑡
1
=Gain(𝑡) if a

suggestionwas displayed at 𝑡 , otherwise𝑟𝑡
1
=0. However, the sparsity

in 𝑟1 (i.e., the agent only receives a single reward per trial) prevented

many of the agents from learning to display a suggestion at all.

The second reward setting, 𝑟2, sought to solve the reward spar-

sity issue. Specifically, reward shaping was performed when the

suggestion wasn’t displayed: 𝑟𝑡
2
= Gain(𝑡) if a suggestion was dis-

played at 𝑡 , otherwise 𝑟𝑡
2
=−𝑘 ·𝑝𝑚 . We used 𝑘 to penalize the action

of not displaying any suggestion. Furthermore, an agent received

more of a penalty if it did not display a suggestion when the model

confidence value was high (𝑝𝑚). The penalty factor 𝑘 was treated

as a hyper-parameter during training. While 𝑟2 worked well and

enabled the agents to learn to display suggestions, a static value of 𝑘

might have been limiting. In particular, the penalty of not displaying

a suggestion should have changed as training progresses for true

reward (i.e., gain function) maximization. In other words, the agent

reliance on 𝑘 should be reduced over the training process. Thus, 𝑘

was decreased as the training progressed.

The third reward setting also leveraged the benefit of dense re-

wards, but removed the agents’ reliance on the penalty factor 𝑘 ,

which may have negative impacts on true reward maximization.

In this setting, 𝑟𝑡
3
= Gain(𝑡) −𝑟𝑡−1

3
(where 𝑟0

3
= 0) at a timestamp 𝑡 .

This setting essentially rewarded the agent based on how good it

performed on a particularly timestamp t, by computing the contri-

bution of agent’s action at t towards the gain. This reward setting

thus allowed agents to learn directly from gain functions with dense

feedback.
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Table 4: Validation and testing results when using Optimal Thresholding and Heuristic Thresholding on the time saved for
users and on suggestion usage percentages.

Task Type Strategy (Threshold) Time Saved/Usage% (Std.) % Improved Time Saved/Usage% % Improved
Validation Test

T
i
m
e
s
a
v
e
d Dense Target Selection Optimal Thresholding (0.47) 0.4073s (0.3169s) 44.07% 0.4073s (0.3202s) 39.39%

Dense Target Selection Heuristic Thresholding (0.85) 0.2827s (0.3597s) - 0.2922s (0.3645s) -

Text Matching Optimal Thresholding (0.98) 1.5822s (1.7991s) 268.38% 1.6211s (1.7946s) 260.89%

Text Matching Heuristic Thresholding (0.50) 0.4295s (1.1225s) - 0.4492s (1.1440s) -

U
s
a
g
e
%

Dense Target Selection Optimal Thresholding (0.81) 65.85% (17.70%) 0.64% 65.69% (18.30%) 0.36%

Dense Target Selection Heuristic Thresholding (0.85) 65.43% (20.24%) - 65.45% (20.42%) -

Text Matching Optimal Thresholding (0.96) 87.33% (18.44%) 50.72% 87.17% (18.53%) 51.52%

Text Matching Heuristic Thresholding (0.50) 57.94% (15.85%) - 57.53% (15.63%) -

Table 5: Validation and testing results of RL regarding time saved for users and suggestion usage percentages.

Task Type Strategy Time Saved (Std.) % Improved Time Saved % Improved Usage% (Std.) % Improved Usage% % Improved
Validation Test Validation Test

Pointing PPO-MLP 0.4078s (0.3253s) 44.25% 0.4087s (0.3285s) 39.87% - - - -

Pointing ACER-LSTM 0.4079s (0.3354s) 44.29% 0.4084s (0.3362s) 39.77% - - - -

Text Matching PPO-MLP 1.5673s (1.7878s) 265.91% 1.6050s (1.7877s) 257.30% 87.33% (18.18%) 50.72% 87.31% (18.05%) 51.76%

Text Matching ACER-LSTM 1.5275s (1.7418s) 240.05% 1.5671s (1.7328s) 248.86% - - - -

B.1.5 RLTrainingMethodology. OpenAIGym[16]withStableBase-

lines [34] (for recurrent policies) and Stable Baselines3 [56] (forMLP

policies) were used to build and train the RL agents. A preliminary

analysiswas first run on the toy dataset to determine the appropriate

model-free RL training algorithms (PPO2, DQN, A2C, and ACER),

reward settings (𝑟1, 𝑟2, and 𝑟3), policy architectures (MLP and LSTM),

policy network size, and training epochs for both task scenarios

using the default hyper-parameter settings from the Stable Baselines.

This experimentation demonstrated that the PPO2 training with

MLP policies was a lightweight and effective solution. ACERwith

LSTMwas the other powerful solution that worked well, but may

take longer to train. 𝑟3 was also found to be more suitable for the

dense target selection task, while 𝑟2 was better for the text matching

task. The training with 4𝑒6 steps was sufficient for MLP policies and

2𝑒6 steps was adequate for LSTM policies, based on the convergence

of gain in the validation dataset.

After the preliminary exploration, full-range hyper-parameter

searches were performed with Optuna [5] using the training dataset

formemorysize𝑚, penalty𝑘 , networksize, activation function, learn-

ing rate, batch size, discount factor𝛾 , and other algorithm-related

parameters following the guidance of RL Baselines Zoo [55]. The

model was then fine-tuned by focusing on several key parameters

related to training. The training was stopped when the gain in the

validation dataset converged. After training all the agents, their per-

formance on the validation and testing dataset were benchmarked.

B.2 Validation and testing results
Detailed validation and testing results of Optimal Thresholding,

Heuristic Thresholding, and RL can be found in Table 4 and Table 5.

B.3 Simulation 4: Revisiting a Prior Study
To determine the optimal timing of highlighting suggestions if we

were to use an existing model for intelligent suggestion, we ran

another simulation using an open-sourced dataset from a prior

work [20]. The dataset contained 809 trials with four prediction

features over time (i.e., position x, y, z, and rotation yaw every 10

milliseconds) and a final selected target. The original work was

replicated with respect to data augmentation, LSTM structure, and

training protocol, resulting in a model with 95.06% testing accuracy.

For COBO, the features were refit to the trained model to obtain

model confidence values over time for the 807 trials.

While it could be challenging to replicate the original study and

acquire empirical data on participant response behavior towards

intelligent suggestions, the following assumptionsweremade for the

cost and benefit functions: (1) It would take participants 0.5 seconds

(i.e., 0.25 seconds reaction time and 0.25 seconds trigger pressing

time) to respond to a correct suggestion; (2) An incorrect suggestion

would cause 0.25 seconds (i.e., reaction time) of delay; (3) partici-

pants would act rationally [62] and would not use a suggestion if

the estimated response time (current time + 0.5 seconds) was larger

than task completion time of that trial without any suggestion.

Under these assumptions, the optimized threshold for the two

objectives were calculated using the COBO framework. The results

show that the optimized threshold for completion time (𝑡ℎ𝑟𝑒𝑠 =0.90)

was able to save 0.0801 seconds (𝑠𝑡𝑑. = 0.1540 seconds) and the op-

timized threshold for the usage percentage (𝑡ℎ𝑟𝑒𝑠 = 0.82) led to

52.27% (𝑠𝑡𝑑.=42.20%) of clicks. Nine Pareto optimal values were also

found(𝑡ℎ𝑟𝑒𝑠 =0.82−0.90). The performance improvement in terms

of time savings was small for this selection task, although a higher

suggestion usage percentage could lead to better user experiences.

The original authors’ estimate based on the prediction accuracy

alone (𝑡ℎ𝑟𝑒𝑠 =0.85) was close to our simulation results.
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