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ABSTRACT 
Wrist-based input often requires tuning parameter settings in corre-
spondence to between-user and between-session diferences, such 
as variations in hand anatomy, wearing position, posture, etc. Tra-
ditionally, users either work with predefned parameter values 
not optimized for individuals or undergo time-consuming calibra-
tion processes. We propose an online Bayesian Optimization (BO)-
based method for rapidly determining the user-specifc optimal 
settings of wrist-based pointing. Specifcally, we develop a meta-
Bayesian optimization (meta-BO) method, difering from traditional 
human-in-the-loop BO: By incorporating meta-learning of prior 
optimization data from a user population with BO, meta-BO enables 
rapid calibration of parameters for new users with a handful of 
trials. We evaluate our method with two representative and dis-
tinct wrist-based interactions: absolute and relative pointing. On 
a weighted-sum metric that consists of completion time, aiming 
error, and trajectory quality, meta-BO improves absolute pointing 
performance by 22.92% and 21.35% compared to BO and manual 
calibration, and improves relative pointing performance by 25.43% 
and 13.60%. 
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1 INTRODUCTION 
In addition to its ubiquity in the HCI literature [2, 10, 29, 43, 63, 64], 
wrist-based input has been posited in the industry as one of the key 
candidates for driving future freehand interactions in AR1. Akin to 
conventional interaction devices such as a mouse, which are char-
acterized by parameters like transfer function [52] and input flter 
variables [12], wrist-based devices also possess various parameters 
for setting transfer functions or device calibration or other input 
functionalities [11]. The parameter settings for the interactions 
with these input devices signifcantly infuence the user experi-
ence and performance [13, 101]. However, the one-design-fts-all 
parameter setting strategy of traditional input devices (e.g., mouse, 

1
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Figure 1: Our absolute pointing interaction using a wrist-worn device. The sensed yaw (green) and pitch (red) values map to the 
cursor’s x and y coordinates. 
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Figure 2: Our relative pointing interaction. (a) Our study participants performed relative pointing in an arms-down position. (b) 
An ideal situation where the sensed wrist angle �� is aligned with the user’s intention. (c) A more realistic scenario where the 
device is worn with a subtle rotational diference � ’, hence the sensed direction �� is less than the user’s intended direction. (d) 
We use an angular correction parameter �� to compensate for such rotational diference. As described in Equation 8, �� is added 
upon �� . 

keyboard, touch-button, etc.) does not sufce for wrist-based de-
vices for several reasons. Unlike other interaction techniques, a 
good parameter setting for wrist-based interactions varies signif-
icantly across diferent users owing to their physical, behavioral, 
and preference-based diferences [29]. For example, some users 
prefer to perform wrist motions with a wider range, while others 
prefer narrower wrist motions. Further complicating matters, the 
optimal parameter setting for a user may change based on how the 
device is worn, hand positions, and environmental factors. A user 
may wear the device in slightly diferent positions each time, neces-
sitating unique parameter settings for each use. To identify the best 
user-specifc and session-specifc parameter values, users typically 
undergo a manual calibration process to determine a reasonable 
setting [28, 29]. However, calibration requires extra dedicated time 
from users, delaying the intended interaction [1, 29, 32, 44, 96], and 
is often designed manually by developers which does not guarantee 
the optimal outcome. 

Human-in-the-loop (HitL) optimization [31, 85] has the potential 
to automatically identify optimal parametric settings while users 
engage in the intended interaction [15, 45, 104]. Among various 
optimization methods, Bayesian optimization (BO) has gained pop-
ularity for HitL applications due to its versatility and efectiveness 
[8, 17, 31, 49, 103]. Although BO has proven to be more sample-

efcient than many other algorithms [8], it still requires many 
iterations and a long duration to converge. For instance, Chan et al. 
[15] spent an hour optimizing a pointing interaction using BO. 

How can we enhance the efciency of BO for its application 
in online and rapid human-in-the-loop applications? Our solution 
augments BO with prior experience, enabling it to proactively ex-
plore parameter areas with the most potential for promising user 
performance. We adopt our solution from meta-Bayesian optimiza-

tion (meta-BO) [3, 23, 54, 91, 93, 100], an emerging paradigm of 
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BO-based methods for rapid optimization by utilizing datasets gath-
ered from similar optimization tasks2. By leveraging the experience 
of optimizing the parameter settings for a group of users in ad-
vance, meta-BO can efciently optimize for new users for the same 
interaction. While meta-BO has gained growing attention in ma-

chine learning research, its potential utility in HCI remains largely 
unexplored. We extend a specifc meta-BO method called Transfer 
Acquisition Function (TAF) [100], which builds independent popu-
lation models using the past optimization data and then combines 
these population models with incoming data for rapid optimization 
of interaction parameters in online settings. Our approach, which 
we term Transfer Acquisition Function+ (TAF+) extends TAF for 
parametric optimization in interaction applications by enabling 
designers to control weighting both in balancing an application’s 
multiple objectives (e.g. speed and accuracy in pointing) and be-
tween prior population data and new incoming data in real-time 
deployments. TAF+ 

thus enables design fexibility for achieving 
diverse objectives and efcient adaptation. 

We demonstrate the efcacy of our TAF+-powered workfow for 
rapid parametric optimization of two common and distinct wrist-
based pointing interactions: absolute pointing (Figure 1) and relative 
pointing (Figure 2). Absolute pointing involves moving the cursor 
using forearm motion sensed by a wrist inertial measurement unit 
(IMU) similar to prior work [34, 65]. Relative pointing involves mov-

ing the cursor using relative wrist rotation [28, 43, 77]. Pointing is a 
particularly relevant challenge for AR interfaces, and absolute and 
relative pointing represent the two fundamental types of pointing. 
Combined with the signifcance of wrist-based input for future AR 
interfaces, wrist-based absolute and relative pointing interactions 
are a timely and relevant problem to solve. 

We conduct a study that evaluates our meta-BO method TAF+ 

along with two baseline procedures we mentioned above: man-

ual calibration and standard Bayesian optimization. The results 
show that meta-BO led to signifcantly better performance on a 
weighted-sum metric that consisted of completion time, aiming er-
ror, and trajectory quality. Specifcally, meta-BO improves absolute 
pointing performance by 22.92% and 21.35% compared to BO and 
manual calibration respectively, and improves relative pointing per-
formance by 25.43% and 13.60% than BO and manual respectively. 
In summary, we make the following key contributions: 

• Introducing a novel meta-BO method called Transfer Acquisi-
tion Function+ (TAF+) as an online, sample-efcient parametric 
optimization approach in HCI : TAF+ 

extends TAF by enabling 
designer control of (a) weighting multiple task objectives, 
and (b) tuning the importance between prior population and 
current real-time user’s data. 

• Demonstrating the efcacy of TAF+ to identify user-specifc, 
optimal parametric settings for two distinct forms of wrist-
based pointing: TAF+ 

outperformed established baselines -
manual calibration and standard BO. 

2
Note that in the context of HitL optimization, “one optimization task” refers to 
optimizing for “a specifc user”. 

2 RELATED WORK 

2.1 Wrist-based interactions 
Inertial measurement units (IMUs) are used commonly to detect 
hand motion. Dipietro et al. [20], Perng et al. [72] proposed various 
glove-mounted IMU systems, and later research proposed wrist-
worn form factors [2, 10, 43, 63, 64]. Previous works have deployed 
IMUs for detecting human activity [2, 86], projecting raycasting 
with the detected motion [33, 34, 65, 71], and gesture recognition 
[51, 59]. Our absolute pointing approach is similar to Nancel et al. 
[65] where forearm movements sensed by an IMU control a cursor’s 
position in a 2D interface. Our relative pointing approach uses wrist 
rotations to control a cursor’s relative motion. Wrist rotation track-
ing via the wristband has typically used outside-in or inside-out 
sensing. Outside-in uses sensors such as EMG [40, 79], electrical 
impedance tomography [109], and capacitive sensing [75] for infer-
ring wrist angles or gestures. Inside-out sensing uses wrist-worn 
cameras [29, 43, 106]. For our relative pointing, we use a similar de-
vice and method as RotoWrist [77], which consists of a wrist-worn 
IR sensor array that tracks the wrist’s relative angles. 

2.2 Calibration 
In HCI, calibration is a procedure for setting up system parameters 
so the device interaction can work properly, such as tuning a sen-
sor’s internal values [25, 74, 105] or setting parameters based on 
user-dependent features [16, 53]. Calibration has been widely ap-
plied, such as for touchscreen interactions [53], gaze input [73], and 
wearable devices [58, 102]. However, efcient calibration for the 
transfer function of input devices remains a signifcant challenge 
in HCI due to the vast parameter space [52]. 

Given our focus, we review procedures pertaining to wristband 
device calibration and pointing transfer function calibration. Wrist-

based pointing often needs to identify a function that maps sensor 
values to cursor position. WristWhirl [29] requires users to move 
their wrists to the maximum along two axes, and then defnes a 
mapping accordingly. Similarly, WristText [28] requires several 
wrist rotations to capture the maximum sensor values. Our manual 
calibration baseline for absolute pointing uses a similar approach 
where the users identify their preferred operation ranges via fore-
arm motion. While absolute pointing involves a one-to-one mapping 
between input and output (cursor) displacement, relative pointing 
(e.g. mouse pointing or video game sensitivity) involves a CD-gain-
based transfer function that varies cursor motion speed based on in-
put motion speed [11, 52]. This function is typically pre-determined 
using trial-and-error [11] or heuristic iteration [52, 108] and is uni-
form across all users, with an option for the user to fnetune it 
themselves (as in Windows, Mac, and Linux devices). Our manual 
calibration baseline for relative pointing uses a similar approach 
where we instruct the users to fnetune the velocity transfer func-
tion starting with a fxed predetermined setting. 

2.3 Human-in-the-Loop optimization 
Since such calibration procedures do not necessarily result in opti-
mal settings, Human-in-the-Loop (HitL) optimization approaches 
have been proposed. HitL optimization is a general framework in 
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which users serve as the evaluation function, and a mathemati-

cal parametric optimization procedure aims to efciently identify 
the optimal parameter setting [17, 31, 49, 103]. Among many opti-
mization methods, Bayesian optimization (BO) is a computational 
method that has been developed over decades [62, 84]. Prior work 
has used BO as an HitL method [39, 47, 76] for minimizing temporal 
error [57], increasing animation realism [9], game engagement [41], 
haptic distinguishability [56], hearing aids [68, 69], and optimizing 
pointing transfer functions [15]. However, BO is mainly seen as 
an ofine design tool [48, 56, 104] since it requires a large num-

ber of iterations resulting in long-duration user sessions. For a 3D 
target-selection transfer function optimization Chan et al. [15], BO 
required participants to spend 60-90 mins. Consequently, no prior 
work has employed BO for real-time target selection interactions 
with end-users. Another recent HitL approach, AutoGain [52], pro-
posed updating the transfer function based on submovement errors. 
However, AutoGain requires a dedicated session of 30 minutes to 
converge and is constrained to the single objective of minimizing 
aiming error. Our meta-BO method is aimed at overcoming these 
issues and performing rapid, online multi-objective optimization. 

2.4 Meta-learning for BO 
Meta-learning is a general concept that aims to improve the learning 
speed of a system by leveraging the prior experience of similar 
tasks [46, 82, 92, 94]. Successful meta-learning implementations 
have been proposed for recognition and reinforcement-learning 
tasks using deep neural nets [6, 21, 26, 67, 78, 81]. 

In the context of BO, meta-Bayesian optimization (meta-BO) is a 
machine-learning paradigm consisting of diferent implementations 
that use prior optimization data to improve the speed of ongoing 
optimization [3, 18, 54, 95]. Owing to its recency, meta-BO has 
not been employed yet to solve HCI problems. Given its promise 
of speeding up standard BO, we employ the use of meta-BO for 
our problem. There are multiple ways to apply meta-BO and our 
goal was to select one that would ft for HitL tasks like ours. The 
frst approach is to ft all the prior data into a unifed Gaussian 
Process (GP) model [5, 7, 91, 107]. However, the model-ftting in-
creases cubically (O(�3)) with the number of observations making 
the computation time for suggesting the next design impractically 
long. Incorporating the sparse GP potentially allows for better scal-
ability by only retaining a smaller representative dataset [88, 97]. 
However, new challenges and uncertainties arise from constructing 
such complex techniques; for instance, determining the appropriate 
number of datapoints for the sparse GP, tuning hyperparameters 
efectively, managing increased model complexity, and balancing 
computational efciency with accurate uncertainty estimates. The 
second approach is to replace elements in BO with neural networks 
trained on prior data [36, 89, 90, 93, 99]. However, it potentially 
requires a relatively larger amount of data to pre-train the networks. 
Moreover, it generally does not ofer explanability, which is crucial 
for HitL applications. The fnal approach, the one that we adopt, 
is the weighting-based solution [55, 80, 100] which stores separate 
GP models, each model being derived from the data of a previous 
task (in our case, a participant session). The next design suggestion 
is decided based on a weighted aggregation of all the previously 
gathered GPs’ information. This approach has low computational 

complexity, can work with small amounts of prior data, and ofers 
higher explainability to the users with the opportunity of observing 
the result generated by each model. Among several implementa-

tions along this line of research [24, 37, 55, 80], our method extends 
Wistuba et al. [100]’s TAF approach. They demonstrate TAF with 
a single-objective and a naive test function. Our TAF+ approach 
extends this to our multi-objective HitL scenario which presents 
new challenges. 

3 PRELIMINARIES: EXISTING METHODS 
To appropriately explain TAF+, we frst introduce the key concepts 
for BO and meta-BO in this section. Given that TAF+ 

is built upon 
an existing meta-BO method called Transfer Acquisition Function 
(TAF), we also provide an overview of TAF and its limitations. 

3.1 BO using Expected Improvement as the 
acquisition function 

BO identifes the optimal parameter setting that maximizes or mini-

mizes an objective function � (e.g., completion time) over iterations. 
In each iteration, BO selects a parameter setting (denoted as � ) to be 
evaluated (� (�)), resulting in an objective function value � = � (�). 
BO has two key elements: the acquisition function determines which 
� should be evaluated in each iteration, and the surrogate model of 
the true objective function � . 

Since each evaluation of � is expensive e.g., through user interac-
tion, BO relies on acquisition functions, which is cheaper to evaluate 
[38], to determine the next setting to be evaluated. In each iteration, 
BO samples many parameter settings and calculates their acquisi-
tion values (its “worth value”) with the acquisition function. The � 
with the highest acquisition value is picked for the actual evalua-
tion. To generate the acquisition value of a given � , the acquisition 
function relies on BO’s another element — the surrogate model. 
This surrogate model is typically a Gaussian Process regression 
(GP) [70, 83], which generates the predicted objective value (�̂) and 
its associated uncertainty (i.e., variance)3 

for a given � . After the 
actual evaluation of � , each BO iteration results in an observation 
of (� , �) pair; all the observations are then ft into the surrogate 
model (i.e., GP). As BO accumulates more data through iterations, 
its GP becomes more accurate to the true function � , enabling the 
acquisition function to make better predictions. For more details 
on BO, please see [27]. 

Among common acquisition functions [27, 98], we select Ex-
pected Improvement (EI) as the base acquisition function since it is 
used in the TAF paper, upon which we develop our TAF+ 

algorithm. 
An intuitive way to understand Expected Improvement (�� (�)) is 
that it calculates the amount of potential improvement in the objec-
tive function from the current best observation. A formal defnition 
is: 

�� (�) ≡ E� (� ) {max[�ˆ(�) − � + , 0] | H}, (1) 

where �� (�) is the acquisition value at � for the current iteration 
� , �̂ = �ˆ(�) is the predicted objective value at � based on the 
GP model, � + 

is the best-observed performance thus far over the 

3
Note: when dealing with human-in-the-loop tasks, it is recommended to incorporate 
the GP with the inferred noise levels such as the Botorch’s single-task GP implementa-

tion: https://botorch.org/docs/models. 

https://botorch.org/docs/models
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whole optimization history H, consisting of all previous datapoints 
{(�1, �1) . . . (�� −1, �� −1))}. 

3.2 Meta-BO 
Meta-learning is a paradigm of machine learning, focused on achiev-
ing fast adaptation in a given task by leveraging prior data of similar 
tasks [35]. In the context of HitL BO, each task is to identify the 
optimal parameter setting of a user using BO. Thus, the goal of 
meta-learning for BO (i.e., meta-BO) is to leverage the optimization 
data of previous users to enhance the efciency of BO for the new 
user(s). There are generally two phases in meta-BO (Figure 3): The 
frst phase is population modeling which involves gathering data 
from a set of users. We run HitL BO on each user, resulting in one 
GP model (i.e., surrogate model) per user. We defne these models 
as population models. In the second phase, adaptation, meta-BO is 
deployed on the new users. In particular, a new GP is constructed 
by ftting the observations of the new user, while leveraging the 
population models when possible. We call this new GP model adap-
tation model since it aims to “adapt” the previous GP models to the 
new user. 

3.3 Transfer Acquisition Function (TAF): a 
meta-BO method 

BO needs to search randomly in the initial iterations since its sur-
rogate GP model does not have information to guide a meaningful 
search. Transfer Acquisition Function (TAF) is a specifc meta-BO 
method that addresses this limitation by utilizing previous popula-
tion models as informative prior for guiding the search. Specifcally, 
TAF is an acquisition function that considers both the adaptation 
model built upon the observations of the current user and the previ-
ously gathered population models. Thus, even when the adaptation 
model has no (or limited) information, population models can still 
guide the optimizer in selecting a setting (�) that is likely to lead 
to good performances (�). Similar to the purpose of the regular 
acquisition functions in the BO process, the � with the highest TAF 
value will then be evaluated by the new user in each iteration. The 
gathered observation will ft into only the adaptation model, further 
improving its predictions in the later iterations. 

TAF aggregates the Expected Improvement (�� ) value from the 
current adaptation model as well as from all the population models 
for a given parameter setting � . Here we defne the �� calculated 
from the population models as Population Expected Improvement 
(��� ) to diferentiate from the �� calculated from the current adap-
tation model. ��� is calculated similarly to �� (see Equation 1, and 
refer to section 7 of the original paper [100] for more details). This 
leads to one �� value and � ��� values for a given � , where � is 
the number of population models. TAF then computes a weighted 
combination of these values to obtain the acquisition function value 
at � : 

Í� 
=1 � � ��� � (�) + �� +1�� (�)� 

��� (�) = , (2)Í�+1 � � � =1 

where �� (�) is the Expected Improvement from the adaptation 
model, while ��� � (�) is the Population Expected Improvement 

based on the �-th population model. � ∈ 1, ..., � denotes the in-
dex of the population models. Finally, � � are weights on each ��� , 
and ��+1 is the weight assigned on the �� . We defne this sum-

mary across diferent models as “between-model combination” 
(Figure 3). 

3.3.1 Model weights. TAF computes a weighted combination of 
the �� and ��� values using weights � � . A higher weight means 
that this model’s �� (or ��� ) value is more valuable or reliable. Here, 
we defne such weights on models as “model weights”. Following 
Wistuba et al. [100], we use a variance-based method for deter-
mining these weights. An intuitive explanation is that the weight 
of a model is based on the confdence of its prediction at � . Low 
variance from a particular model (see the red area of each model 
in Figure 3) indicates higher confdence, so its resulting weight is 
higher in TAF computation (Equation 2). On the contrary, when 
the variance is large, the model has less confdence in its prediction, 
so the corresponding weight should be lower4. 

The population models generally do not have a large variance 
since they are already ftted with data from the previous optimiza-

tion processes. However, at the beginning of an adaptation, the 
adaptation model has none or very few datapoints, so the variance 
is overall high, leading to its low model weight. Hence, TAF initially 
relies more on the population models. Figure 3 shows an example. 
As the adaptation model is ftted with more observations from the 
current user, its variances decrease over iterations. Consequently, 
TAF gradually increases the adaptation model’s weight after ample 
iterations, achieving personalization. 

3.3.2 Limitations of TAF. Prior works have evaluated the perfor-
mance of TAF with various single-objective testing functions. TAF 
signifcantly outperformed the standard BO while being computa-

tionally lightweight [93, 100]. However, TAF has two major lim-

itations, making it unsuitable for realistic HitL problems. It was 
designed to handle a single objective. Yet, a realistic interaction 
usually involves multiple objectives, which are unclear as to how to 
address with TAF. Secondly, TAF does not allow proactively shifting 
weights from population models to the adaptation model. Although 
TAF gradually increases the weights of the adaptation model with 
more observations, there are scenarios in which we hope TAF relies 
on the adaptation model in earlier iterations. For example, when 
the new user exhibits behaviors diferent from all the population 
models, shifting the importance to the adaptation model allows for 
a more efcient user-specifc adaptation. However, TAF does not 
have a mechanism to support that. 

4 TRANSFER ACQUISITION FUNCTION+ 

(TAF
+
) AND ITS ACCOMPANYING 

WORKFLOW 
We develop our Transfer Acquisition Function+ 

(TAF
+
) algorithm 

by leveraging TAF. Accompanying the algorithm is its workfow 
(see Figure 5). The frst three steps are ofine steps to be performed 
by the developer before deploying the method on the device. The 

4
Please refer to Section 6.1 of the original paper [100] for details, in which this particular 
weighting method was named TAF-M. The same implementation was replicated in 
Volpp et al. [93], where it was referred to as TAF-ME. 
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Figure 3: Overview of Transfer Acquisition Function (TAF) with an example of 2 population models: TAF is a weighted sum 
of several acquisition values generated by the currently constructed model and the models gathered in advance (i.e., �� or 
��� � where � is the index of the models). In PHASE 1, Population models are constructed per user using optimization data. 
Each model predicts the user performance �̂ (red line), the corresponding acquisition value (��� ), and the uncertainty of 
this prediction (the red area) of a specifc � . In PHASE 2, a new Adaptation model is created for the new user. To derive the 
acquisition value, TAF computes between-model combination values across all models (including adaptation model’s �� and 
population models’ ����) based on the model weights. Model weights are denoted as � � , and they are computed based on the 
variance (width of the red area) of each prediction. The �� (or ��� ) with a higher uncertainty have lower weights. The example 
is computing the TAF at � = 0.7, where the adaptation model has very high uncertainty in early iterations, so the TAF value 
is majorly determined by the population models. As the adaptation model gains more observations, TAF will gradually be 
dominated by the Adaptation model, leading to the user-specifc optimal result. 

fnal step is the online adaptation that the end-users experience 
while performing the pointing interactions with the device. 

Here, we frst introduce TAF+ 
and then provide an overview of 

each step of the workfow. Lastly, we compare the TAF+ 
workfow 

with other baseline methods. 

4.1 Transfer Acquisition Function+ 
(TAF

+
) 

The main idea of TAF+ 
is to mitigate the limitations of TAF with 

two crucial extensions: dynamically handling multiple objectives 
and proactively balancing the weights of the population models and 
the adaptation model. 

4.1.1 Extension 1: Dynamically handling multiple objectives. In real-
istic interactions, there is usually more than one objective function, 
which limits the direct application of TAF. A naive solution is a 
weighted-sum approach that transforms multiple objectives into 
a single objective, where a set of weights on each objective must 
be predefned. The resultant weighted-sum objective can then be 
used for both population modeling and adaptation phases, thereby 
enabling the application of TAF to multi-objective settings. Despite 
its simplicity, this approach has various limitations for realistic 
tasks. The weight assignment needs to be arbitrarily done by the 
designer beforehand, and there is no fexibility to tune the weights 
later. In practice, there is a high potential that the designer would 
need to adjust the weights since the predefned weights may not 
be ideal. 

As shown in Figure 4, our TAF+ 
takes a diferent approach. In-

stead of predetermining a fxed set of weights for objective func-
tions, our population modeling is performed in a multi-objective 
manner. That is, our population models generate multiple acquisi-
tion values, each for one objective, instead of only a single value, 
for a given � . Then, in the adaptation phase, TAF+ dynamically 
combines these acquisition values into one value per model accord-
ing to the weights assigned to the objective functions. Such weights 
can be adjusted whenever needed. 

We denote the acquisition values on diferent objectives as �� � 

or ��� � , where � is the index of the objectives. During the adap-
tation phase, for each model, TAF+ 

frst combines these values of 
diferent objectives into a single acquisition value (�� + 

or ��� +, 
where the + sign indicates this is an aggregated value) based on 
the weights of objectives. We refer to this combination as “within-

model combination” to diferentiate from the between-model 
combination (Figure 3), and we defne these weights of the ob-
jectives as “objective weights” to diferentiate them from the 
weights on models. This feature enables a designer to dynamically 
adjust the objective weights at any time, even after the popula-
tion modeling. Designers can even dynamically tailor the objective 
weights for diferent users or contexts. In subsection 4.2, we il-
lustrate a workfow that allows designers to identify the optimal 
objective weights based on the users’ subjective ratings (see step 
2 in Figure 5). Subsequently, TAF+ 

combines all the acquisition 
values across diferent models into a fnal value based on the model 
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Figure 4: Transfer Acquisition Function+ 
(TAF

+
) in an example task of two objectives: Both the Adaptation model and the 

Population models can generate predicted performances of two objectives (red/blue lines), the corresponding acquisition values 
(�� � or ��� � , where � is the index of the objectives and � is the index of the models), and the uncertainty of this prediction (shown 

� 
as the red/blue are). The two major phases (population modeling and adaptation) are identical to TAF (Figure 3). For handling 
multiple objectives, TAF+ 

frst performs a within-model combination: Within a model � , it summarizes acquisition values (�� � 
� 

or ��� � ) of diferent objectives into a single weighted-sum value (�� + 
or ��� +) and summarizes weights of diferent objectives 

� � � 

(�� ) into a single weight (�+) based on the objective weights. Once every model has a summed acquisition value (�� + 
or ��� +)

� � � 
and a model weight (�+), TAF+ 

then performs a between-model combination, similarly to TAF, deriving the fnal TAF+ value. 
� 

weights. Such a between-model combination is identical to that 
in TAF. To this point, TAF+ 

can be formally written as: Í� 
=1 �

+��� +(�) + �
� 
+
+1�� 

+(�)� � � 
��� +(�) = , (3)Í�+1 �+ 

�=1 � 

where �� + 
and ��� + 

are weighted sums of �� and ��� values re-
spectively from several objectives. � ∈ 1, ..., � denote the index of 
the population models. Assuming � diferent objectives, we can 
denote �� + 

and ��� + 
as: 

� � ∑ ∑ 
�� �� ��� + 

� (�) = · ��� �� (�), �� + = · �� � (�), (4) 
�=1 �=1 

where � ∈ {1, ..., �} denotes the index of objectives, and �� is the 
objective weight of the �-th objective function. Furthermore, in 
contrast to TAF, where each population or adaptation model as-
sociates with a single objective and has one model weight, TAF+ 

considers multiple objectives. Consequently, each model has mul-

tiple weights – each is associated with one objective for each EI 
or PEI. Formally, we denote these weights as �� where � is the 

index of the objectives. During the within-model combination in 
TAF

+
, similar to the process of deriving �� + 

or ��� +, the objective 
weights �� are utilized to combine multiple weights �� into one 
single weight �+:

� 

� � ∑ ∑ 
� + = � (�) · �� · ��� (�), �+ = �� · ��

� 
+1 (�), (5)� �+1 

�=1 �=1 

where �� is the same objective weight shared with Equation 4, and 
�� (�) is the �-th model’s weight on the �-th objective function. Each 
� 

�� (�) value is calculated in a manner similar to TAF, as described 
� 

in subsubsection 3.3.1. � (�) is a decay factor applied only to the 
population models, which will be elaborated in subsubsection 4.1.2 
and Equation 6. 

4.1.2 Extension 2: Proactively balancing the weights of population 
models and the adaptation model. The second extension is meant 
to cope with the potentially high user diversity. � (�) in Equation 5 
denotes the decay of the weights on the population models. This 
decay is a scalar value ranging [0, 1], which is directly multiplied by 
the original weight values �� (�). � (�) = 1 means there is no decay, 

� 
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and � (�) = 0 means the adaptation fully relying on the adaptation 
model. An ideal decay should update over iterations – it may not be 
efective in the early iterations since the adaptation model has very 
limited information but should increase over iterations as more data 
becomes available from the current user. The decay � (�) is thus 
an iteration-dependent function with two hyperparameters: �1 the 
iteration number after which the decay kicks into efect, and the 
other �2 determines the rate of the decay. We can formally describe 
� (�) as: 


1, if � ≤ �1 

1� (�) = 1 − (� − �1) · �2, if �1 < � ≤ �1 + (6)
�2

0, otherwise 

where � is the count of the iteration, �1 is a positive integer (or 0), 
and �2 ∈ (0, 1]. There is no decay when the iteration count is less 
than �1. After �1-th iteration, the decay starts with the rate of �2; 
i.e., every iteration, the scalar � (�) decreases by �2. Once the scalar 
reaches 0, it stays at 0, so � + 

stays 0 as well, and hence adaptation
� 

starts fully relying on the adaptation model. 
With this extension, TAF+ 

allows actively determining how the 
population models should decrease their importance. For instance, 
in a population where all the users exhibit high similarity, the 
optimal design for the new user is likely to be highly similar to the 
population models. Hence, the designer can set �2 as 0, allowing the 
population models to consistently guide the current optimization. 
On the other hand, when there is a higher diversity between users, 
a designer can leverage the population models in the initial steps 
and let the adaptation quickly develop based on the current data. 
In such a case, the designer can set �1 and �2 to properly decay to 
achieve faster adaptation. Our workfow has an additional step to 
derive the optimal �1 and �2 (see step 3 in Figure 5). On the contrary, 
TAF does not have a similar mechanism, potentially not suitable 
for interactions requiring fast adaptation. 

4.1.3 Potential generalizability of TAF+ 
for HitL optimization: TAF+ 

shares the foundational principles of BO, a versatile parametric op-
timization method with minimal assumptions of the task [27, 84] 
and has proven its generalizability over a wide range of HCI appli-
cations [9, 15, 17, 47, 57, 87]. Extended from BO, the only essential 
assumption of our TAF+ 

is that while users have individual dif-
ferences, there exist parameter ranges that generally lead to good 
user performance. This is a common assumption in HCI and design, 
where a certain range of parameters or designs are considered efec-
tive for the broader user base despite individual disparities. Thus, 
TAF

+ 
can be used as a general approach for other HitL problems as 

well. In rare occasions where there are completely no overlapping 
traits between the population models, designers can use the TAF+ 

workfow to forecast this outcome (see subsection 4.5) and use other 
methods instead. We demonstrate the potential generalizability of 
TAF

+ 
with a series of simulations, as presented in subsection 4.6. 

4.2 Overview of the TAF+ 
workfow 

Figure 5 provides the overview of TAF+ 
workfow, which contains 

three steps to prepare the population models followed by the de-
ployment in the adaptation phase. The frst step of TAF+ 

workfow 
entails building population models that generate multi-objective 

predictions. This step eliminates the need to predefne the objec-
tive weights for multiple objectives in advance and enables the 
fexibility of setting them later. The second step focuses on identi-
fying the optimal objective weights � corresponding to the maxi-

mum subjective ratings. By optimizing the objective weights, the 
designers can actively steer the optimization to explore the parts of 
the Pareto-frontier that maximize the user’s feedback. In the third 
step, the optimal decay hyperparameter settings (Equation 6) for 
the gathered population models are identifed using grid search in 
simulations. Diferent decay hyperparameter settings are tested in 
simulation to identify which setting leads to the optimal simulated 
adaptation performance. Finally, we deploy meta-BO, our TAF+, 
in adaptation on the end-users, where the population models, 
optimal objective weights, and the decay hyperparameters are 
utilized. We detail each step below. 

4.3 Step 1: Population modeling 
We performed a data collection where users went through HitL 
optimization guided by multi-objective BO. The data of each user is 
then used to construct a GP model, which predicts the performance 
of multiple objective functions when given a � . Note that this step 
does not incur any additional costs for end-users because the end-
users only experience the adaptation phase (see Figure 5). 

4.4 Step 2: Objective weight � optimization 
TAF

+ 
transforms the optimization problem from multiple objectives 

into a single objective based on objective weights. The selected 
three objectives involve intrinsic trade-ofs, the same as other input 
devices. To identify the optimal weights, the subjective ratings of 
each user’s Pareto-optimal designs are obtained and used to identify 
the weight set that results in the designs with the highest subjective 
rating. This step is a “population-level” weight optimization because 
its goal is to identify the weight setting that captures the highest 
ratings across all users. 

4.4.1 Objective weight optimization for a single user: Consider a 
simplifed single-user scenario for a better understanding of our 
method (Table 1). Our procedure involves sampling a list of possible 
weight sets (e.g, [0.1, 0.1, 0.8], [0.1, 0.2, 0.7], ... for a problem with 
three objectives). Each weight set is applied to all the Pareto-optimal 
designs’ objective values of this user to identify the design among 
the Pareto frontier with the highest weighted-sum objective value. 
We then record the user’s rating for this particular design as the 
score of this weight. By trying out all the weights and comparing 
their corresponding ratings, we can identify the optimal objective 
weights that leads to the highest user rating. 

With a single user, we could conclude the objective weight 
assignment by assigning weights in accordance with the highest 
user rating. However, at the population level, diferent users may 
favor the objectives diferently. We therefore need to fnd the ob-
jective weight assignment that is the best across all users in the 
population. For instance, for the user presented in Table 1, design B 
has the highest user rating, and its third objective function has the 
highest value. Intuitively, it suggests that this user favors the third 
objective; then assigning the objective weights as [0.1, 0.1, 0.8] is 
a reasonable and straightforward solution. However, at the popula-
tion level, diferent users potentially favor diferent objectives, so it 
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Figure 5: TAF+ 
workfow: subsection 4.2 provides the details and explanations of each step. Similar to other meta-learning 

workfows, the frst step in ours is population modeling, and fnally, TAF+ 
is deployed on the end-users (adaptation). TAF+ 

workfow has two additional steps (steps 2 and 3) for deriving the optimal objective weights and the decay hyperparameters. 

Weighted-sum Weighted-sum Weighted-sum 
Pareto-optimal Original 

objective value objective value objective value User rating 
designs/settings objective values 

(weights=[0.7, 0.2, 0.1]) (weights=[0.2, 0.3, 0.5]) (weights=[0.2, 0.6, 0.2]) 

A [7, 2, 5] 5.8 5.5 3.6 75 
B [5, 4, 8] 5.1 6.2 5 100 
C [3, 9, 2] 4.1 4.3 6.4 1 

Table 1: The table shows a set of Pareto-optimal designs in a three-objective optimization problem. We demonstrate how to 
obtain the optimal objective weights leveraging the user ratings. The second column shows that designs A, B, and C have 
diferent objective value sets. Columns 3 - 5 demonstrate we can calculate the weighted-sum objective values when a set of 
objective weights are given. Diferent objective weights lead to diferent optimal designs. For instance, under weights 
= [0.7, 0.2, 0.1], design A is the best design. However, under weights = [0.2, 0.3, 0.5], design B is the optimal design. Since we 
have gathered the user’s ratings on each design, we can compare which objective weight setting leads to the design that 
corresponds to a higher user rating. In this example, the second weight ([0.2, 0.3, 0.5]) is the most preferred weight among the 
three weight settings because it leads to B as the fnal design, whose user rating is the highest, 100. 

is unlikely to intuitively identify a single objective that leads to the 
highest ratings for all. Therefore, a grid search is a more thorough 
solution. More details are below. 

4.4.2 Objective weight optimization across all users: To obtain 
the best weight setting across all users, we leverage the process 
described in subsubsection 4.4.1 for each user in the population. In 
particular, we obtain the weighted-sum optimal designs among the 
Pareto-optimal designs of all users by running the aforementioned 
process for a given weight set (e.g, [0.1, 0.1, 0.8], [0.1, 0.2, 0.7], [0.1, 
0.3, 0.6], ...). Then, all the users’ subjective ratings corresponding 
to the resultant optimal designs are combined as a fnal score for 
that objective weight set. Finally, the fnal scores of all weight 
sets are compared, and the weight set that leads to the highest net 
user rating is identifed. Appendix A.1 elaborates on the need 
for searching for the best objective weight confguration in this 
manner through a small example scenario. Appendix A.2 also 
provides the detailed algorithm that is explained here. 

4.5 Step 3: Decay hyperparameter optimization 
TAF+ 

has a set of hyperparameters that decreases the weights of 
the population models (Equation 6). The step aims to identify the 
optimal hyperparameter setting through simulations. In these sim-

ulations, we take one population model at a time and treat it as a 
new user. Meanwhile, we treat the remaining models as population 

models to conduct TAF+. We then performed a grid search over 
diferent sets of < �1, �2 > values to identify the < �1, �2 > pair that 
yielded the best performance at the population level. This optimal 
hyperparameter setting can then be used for subsequent TAF+ 

runs. 
This simulation can be an efective pre-check step before deploy-

ing meta-BO. Future practitioners can utilize such simulations to 
foresee the potential efcacy of meta-BO for their own tasks. In 
rare cases, users may behave completely diferently for a particular 
interaction. This step informs the practitioners that TAF+ 

would 
not outperform BO regardless of the hyperparameter setting, so 
they can deploy a standard BO instead. Furthermore, practitioners 
can utilize the simulations to observe the performance of meta-BO 
with diferent numbers of population models and learn that larger 
user groups may be needed in certain cases. 

4.6 Evaluating TAF+’s viability via simulations 
on synthetic test functions 

Before applying TAF+ 
onto the target interactions, we present syn-

thetic simulations that evaluate TAF+ in multi-objective problems 
with common test functions, such as Sphere5, Branin6, and Hart-
mann 3D7

. Our simulations use the same objective functions and 

5
See https://www.sfu.ca/~ssurjano/spheref.html. 

6
See http://www.sfu.ca/~ssurjano/branin.html. 

7
See https://www.sfu.ca/~ssurjano/hart3.html. 

https://www.sfu.ca/~ssurjano/spheref.html
http://www.sfu.ca/~ssurjano/branin.html
https://www.sfu.ca/~ssurjano/hart3.html
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number of parameters as relative pointing. We evaluated TAF+’s 
performance under 6 diferent objective weight confgurations, 
highlighting its advantage of ofering high fexibility for the design-
ers to fne-tune the objective weight when needed. We further 
evaluated TAF+’s performance with fve levels of user group simi-

larity, showing its efectiveness even when users exhibit high dif-
ferences. We also evaluated the potential generalizability of TAF+ 

with four diferent functions and with fve population model sizes. 
Our simulation analysis shows that TAF+ always converged to 
global optimality and outperformed BO in various conditions. This 
provides evidence for its potential in a wide range of interactions. 
Appendix B presents the detailed procedure and results of our 
simulations. 

4.7 Summary 
To summarize, TAF+ 

improves over TAF so as to handle HitL sce-
narios in two aspects: it can fexibly handle multiple objectives 
and it can proactively decay the weights of prior models as 
the user progresses in the adaptation phase. Further, TAF+ 

achieves 
its goal of converging faster than standard BO in the synthetic 
simulations. 

5 INTERACTIONS 
We study two distinct and representative wrist-based pointing in-
teractions: absolute pointing and relative pointing. While these two 
interactions share the same task and objective functions, they use 
diferent hardware (IMU v.s. infrared sensors), diferent body parts 
(forearm v.s. wrist angular motion), diferent device parameters 
(forearm yaw-pitch v.s. wrist angle), diferent transfer functions 
(linear v.s. sigmoid) and diferent parameter counts (2 v.s. 4). We 
purposely chose these two cases to demonstrate the efectiveness 
and the potential generalizability of the meta-BO approach. Below, 
we frst describe the shared details and then the two interactions. 

5.1 Task and software interface 
5.1.1 Task: Both interactions involved 2D target selection (Fig-
ure 6), where participants were asked to move the cursor to the 
target and select it by performing a double pinch. The pinches 
were detected using the highly accurate active electrical sensing 
approach, the same technique used in ElectroRing [42]. Partici-
pants were asked to select the targets “as quickly and accurately as 
possible”. 

5.1.2 Interface: Our goal is to deploy meta-BO online while the 
user performs pointing in a real-world interface. We thus design 
our study interface with varying target sizes and distances in a grid 
to resemble a real-world interface (see Figure 6 a). The targets are 
circular, arranged in an 8 × 4 grid. The diameter of each circle is 
uniformly sampled from a range of [20, 35] mm. The default color of 
all the circles is light grey, and the target circle is highlighted in blue. 
Upon selection, the target turns red. The system then randomly 
samples a diferent circle as the next target. The cursor does not 
reset to the origin between selections. We apply a one-euro flter 
on the cursor position to overcome jitter [12]. 

5.2 Objective functions 
Two interactions share the same objective functions, which we aim 
to optimize. To prevent bias toward any objective function during 
multi-objective optimization, these objective functions were further 
linearly normalized into the range of [−1, 1]. We converted the 
problem into a maximization problem, so 1 is the best performance 
and −1 is the worst8. Similar normalization was also done in prior 
work [15]. 

1. Normalized completion time (��� ): Completion time (CT) is the 
duration from the moment that the cursor leaves the previous target 
to when the selection is complete, a typical way to assess the input 
efciency. Our targets varied in size and distance; a standard way 
to counterbalance the efect of these variances is to average the 
performance over many selections (e.g., [15]). However, since we 
aimed to use the minimal number of selections for the optimization 
process, we normalized the completion time with the Index of 

�� 
Difculty (ID) [61], and thus ��� = 

�� . 

2. Trajectory aiming error (���): TAE is a crucial metric for evaluat-
ing pointing accuracy [15, 52]. We follow AutoGain [52] that used 
the Persistence1D algorithm [50] to segment a full trajectory into 
sub-movements and then calculated the aiming error of each ballis-
tic sub-movement. For simplicity, we assumed the implicit aiming 
point to always be the target position. After excluding the unaimed, 
interrupted, and non-ballistic movements, we then calculate the 
aiming error (overshoot and undershoot) of each sub-movement 
as the distance between the cursor position at the local minimum 
speed and the closest edge of the target (Figure 6 a). Summing 
up all the aiming errors (��� , where � ∈ [1..�] is the �-th ballistic Í� 
sub-movement), ��� = �=1 ��� . 

3. Trajectory Travel Distance (�� �): TTD measures the amount 
of detour of a selection trajectory. A selection could be fast and 
accurate, but if the cursor travel distance from the previous to the 
current target is longer than the shortest distance, it indicates a 
potentially skewed transfer function. This metric is expressed as 
�� � = �� /�� , where �� is the measured travel distance and �� 
is the ideal distance. In absolute pointing, if the transfer function 
values misalign with the user’s assumed ratio, the user would take 
extra distance to move the cursor along the intended direction. In 
relative pointing, a rotational misalignment in the x-y mapping may 
result in deviations in motion. While TTD may be correlated with 
the previous objective functions, the correlation is partial. TTD 
captures additional useful information. Note that there are intrinsic 
trade-ofs in the selected objectives. 

5.3 Optimization iteration 
From a 4-person pilot test, we decided to have 6 target selections 
in each optimization iteration. The frst two selections were seen 
as “practice” because the users may still be adapting to the new 
setting. We took the average value of the three objective functions 
(see subsection 5.2) of the last four selections as the fnal objective 
values of that iteration. 

8
We conducted a 4-participant pilot study to derive the parameters for the linear 
normalization which ensures three objective functions have similar mean values and 
ranges. 
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Figure 6: Our study interface: (a) The main study interface. The smaller black dot is the cursor, the red circle is the previous 
target, and the blue circle is the current target. (b) The interface for calibrating for the relative pointing. The cursor only moves 
on the y-axis during calibration when the participant performs radial-ulnar deviation motions. (c) Example transfer functions 
for relative pointing. 

Table 2: Design parameterization of absolute pointing. Both 
scalars have been normalized to the [0, 1] range. 

Design Parameter Range 

�� : 
�� : 

Scalar factor maps ��� to � 
Scalar factor maps ����ℎ to � 

[0, 1]
[0, 1] 

5.4 Absolute pointing 
Our absolute pointing interaction utilizes an IMU on the wrist to 
detect the absolute position of the forearm (Figure 1). The challenge 
here is to identify the ideal function that maps the forearm positions 
to the cursor’s 2D positions. 

5.4.1 Device and interaction: The interaction linearly maps the 
IMU < ���, ����ℎ > to < �,� > coordinates on the interface. 
Initially, the < ���, ����ℎ > corresponding to the user’s preferred 
central forearm position in the air is mapped to < 0, 0 >. The system 
then linearly updates the cursor’s � & � positions based on ��� & 
����ℎ respectively. Ideally, each < �,� > coordinate corresponded 
to a specifc < ���, ����ℎ > pair. 

5.4.2 Design parameters: The transfer functions for determining 
cursor position are: 

�� (�) = �� (0) + (��� (�) − ��� (0)) · �� , 
�� (�) = �� (0) + (����ℎ(�) − ����ℎ(0)) · ��, 

(7) 

where �� (0) and �� (0) denote the cursor’s centered � and � posi-
tions in the scene. �� (�) and �� (�) stand for the cursor’s � and � 
positions at time � . ��� (0) and ����ℎ(0) are the centered ��� and 
����ℎ values. ��� (�) and ����ℎ(�) are the ��� and ����ℎ value at 
timestamp � . The two design parameters that need to be determined 
are the transfer scalars �� and �� (Table 2). For diferent users, dif-
ferent motion ranges may be optimal (which may also depend on 
the task), thus requiring per-user parameter optimization. 

5.5 Relative pointing 
Our relative pointing (Figure 2) interaction is similar to mouse 
pointing where users move the cursor by clutching [66]. The cur-
sor’s direction is determined by the sensed wrist movement’s angle. 

Table 3: Design parameterization of relative pointing. 

Design Parameter Range 

�� : angular correction parameter [−10◦ , 50◦ ]
�1: Sigmoid function (overall shape) [0.5, 2.5]
�2: Sigmoid function (center � position) [0.5, 2.5]
�3: Sigmoid function (overall scale in � axis) [0.5, 2] 

The cursor’s moving velocity is determined by a velocity function 
that takes the wrist’s relative velocity as input. The user pinches to 
initiate cursor motion, rotates the wrist to move the cursor in the 
desired direction, and releases the pinch to end cursor motion. The 
user clutches and performs this repeatedly to reach the target. 

5.5.1 Device and sensing: We used the same approach as 
Salemi Parizi et al. [77] to detect wrist angles via infrared (IR) 
sensors on a wristband. The detected wrist fexion/extension and 
radial/ulnar deviation at each timestamp were mapped to the wrist 
plane’s x and y coordinates, respectively (see Figure 2b). With 
measurements at two consecutive timestamps, we derive the wrist 
velocity (�� ), and the detected wrist movement’s angle (�� ). 

5.5.2 Determining cursor’s moving direction: One important factor 
is the wearing position of the device. Ideally, the device should be 
placed exactly perpendicular to the body (Figure 2b). Then, moving 
the cursor along �� would match the user’s intention. Yet, users 
wear the sensor slightly diferently. The slight angular diference 
between the ideal and worn positions can cause the cursor to move 
in unintended angles (see Figure 2c). 

We introduced an angular correction parameter �� , which is a 
value that directly adds to the sensed wrist angle such that �� = 
�� + �� , where �� is the corrected angle, �� is the sensed angle, 
and �� is the correction parameter. After the correction, the cursor 
moves as intended �� . Figure 2d shows an efective correction. 
Thus, �� is an important design parameter that directly impacts 
�� � . Here, we defne our relative transfer function: 

�� (� ) = �� (� −1) + � (�� ) ·cos �� , �� (� ) = �� (� − 1) + � (�� ) · sin �� 

(8) 
where �� (�), �� (� ) are the cursor � , � at timestamp � . � (�� ) deter-
mines the cursor velocity based on wrist velocity �� . 
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5.5.3 Determining cursor’s velocity: As in [65], our velocity func-
tion � (�� ) is a sigmoid function, and consists of 3 parameters 
(�1, �2, �3), which defne the sigmoid curve properties (detailed in 
Table 3): 

1 
� (�� ) = · �3, (9)

1 + �−�1 ×(�� −�2 )

In total, there are 4 design parameters to be optimized: the afore-
mentioned angular correction, �� , and 3 parameters in the velocity 
function. From an optimization perspective, relative pointing is 
more complex than absolute. In addition to diferent users having 
diferent wrist rotation ranges, here tiny variations in wearability 
may lead to large sensing variations due to how IR sensors work. 
Additionally, since only the relative wrist motion matters, the user’s 
arm is positioned downwards here (e.g., [60]), which enables relaxed 
use (see Figure 2a). 

6 IMPLEMENTING TAF+ 
WORKFLOW FOR 

OUR WRIST-BASED INTERACTIONS 
In section 4, we introduced the details of each step in the TAF+ 

workfow. Here, we report the process, data collection, and results 
of each step with our target interactions. 

6.1 Step 1: Population modeling via a user data 
collection 

For each interaction, participants performed the task while the 
parameters were changed every iteration based on multi-objective 
BO using Expected Hypervolume Improvement [19] and BoTorch 
[4]

9
. The objective functions and design parameters were detailed 

in section 5. We ran 25 and 40 iterations for absolute and relative 
pointing, respectively. These numbers refect the complexity of the 
tasks. These collected data, i.e., 25 and 40 pairs of (� , �), were used 
to construct the population models. 

6.1.1 Procedure. We recruited 14 participants, 5 male, 8 female, and 
1 non-binary, aged 22 − 57 (������ = 28.5). None of them have any 
experience with VR. The data collection took 2 hours. Because we 
aim to analyze the two interactions independently, all participants 
went through relative pointing frst and then absolute pointing, 
rather than mixing the order of the interactions. To familiarize 
participants with the task, we provided 10 “practice iterations”, 
in which we uniformly sampled design instances from the entire 
design space. There was a 1-minute break every 10 iterations and a 
5-minute break between the two interactions. 

6.1.2 Deriving population models. We derived 14 population mod-

els for each interaction. Appendix C shows the plots of the hyper-
volume increase of two interactions at each iteration. On average, 
there were 4.8 (� .�. = 0.78) and 5.79 (� .� . = 1.12) Pareto-frontier 
settings for absolute pointing and relative pointing, respectively. 
This showed there are intrinsic trade-ofs between the selected 

9
Hyperparameter settings: We used a single-task GP with Matern 5/2 kernel. The 
single-task GP in our implementation infers a homoskedastic noise level of the observed 
data (https://botorch.org/docs/models). Similar to Chan et al. [15], we set � = 1. We 
further set 10 optimization restarts for the optimization of the acquisition function, 
1024 restart candidates for the acquisition function optimization, and 512 Monte Carlo 
samples to approximate the acquisition function. A similar example can be found at 
https://botorch.org/tutorials/multi_objective_bo. 

objective functions, and there is not a single optimal design that 
can maximize the three performance metrics. 

6.2 Step 2: Objective weight � optimization 
based on user ratings 

We determine the ideal values of the objective weights through 
optimization as described below. 

6.2.1 Gathering user ratings. We compare the quality of the Pareto-
optimal weight settings based on the participants’ subjective ratings. 
For each participant, after they fnished the 25 and 40 iterations in 
the previous step, we extracted all the Pareto-optimal parameter 
settings among these samples. Then, we asked the participants to 
perform pointing with these settings and rate them subjectively. 
The instruction was: “For each of the following designs, please rate 
how much you agree with this statement: [This design is easy to use]. 
Please rate from 1 to 100; 1 stands for strongly disagree, and 100 means 
strongly agree.” Participants interacted with each Pareto-optimal 
design twice in a randomized order. We took the average of the 
two ratings on the same parameter setting as its fnal rating. We 
normalized each user’s ratings such that the lowest and highest 
ratings of a user would be 1 and 100. If the rating scale is scarce 
(e.g., only 5 or 7 levels), we may end up with many optimal weights 
that reach identical results when running the objective weight 
optimization. We therefore provided a 1-100 scale to gain the most 
granular information even if the users are not able to be exact in 
their assessments. To avoid a scenario where a user who rates all 
designs highly dominates the optimization process, we normalized 
each user’s rating to a fxed range. 

6.2.2 Results of objective weight optimization: We observed that 
5 users see the 1-100 range as 10 levels (only rated at tens digits), 
4 users see it as 20 levels (only rated at every fve digits), and we 
further found 5 participants provided more fne-grained ratings 
(such as 73 or 92). This shows that the 1-100 scale allows each 
user to be fexible about the granularity they want to use for their 
scores. Following the procedures described in subsection 4.4, we 
sampled all the weight combinations to the frst decimal and then 
performed the population-level objective weight optimization. 
The resulting optimal weight settings of [NCT, TAE, TTD] for 
absolute and relative pointing were [0.4, 0.3, 0.3] and [0.5, 0.3, 0.2], 
respectively. The resulting objective weights highlighted the 
consistent importance of speed (indicated by ��� ) in pointing 
interactions. 

6.3 Step 3: Decay hyperparameter optimization 
via simulations 

We simulated the TAF+ 
with diferent < �1, �2 > values with the 

population models and observed which value pair results in the 
best performance. We set the �1 values to be [1, 2, 3, 4, 5, 6, 7, 8, 9] 
and the �2 values to be [0.1, 0.2, 0.3]. We created a list of < �1, �2 > 
pairs of all the possible combinations. Additionally, we included two 
baselines in the simulation. The frst was a standard single-objective 
Bayesian optimization where the objective was the weighted-sum 
objective. The second baseline was the TAF that handled multiple 
objectives using Equation 4 and no decay on the population model. 
For each < �1, �2 > pair, we ran 14 simulations. In each simulation, 

https://botorch.org/docs/models
https://botorch.org/tutorials/multi_objective_bo
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Figure 7: Result of the decay hyperparameter optimization. We simulated the user performance over 10 iterations with many 
combinations of hyperparameter values. Note that the TAF (multi-objective) condition handled multiple objectives with 
Equation 4. We derived the global maximum from a grid search of the GP prediction. The results showed that TAF+ 

with proper 
decay setting led to the best performance. An extended version of this simulation is presented in Appendix D. 

we singled out a population model and treated it as the new test 
user. We then excluded this model and utilized the remaining 13 
population models to work with TAF+. We set the optimization 
iteration to 10. Thus, each < �1, �2 > pair resulted in 14 (users) ×10 
(iterations) datapoints. 

6.3.1 Results of the simulation. The simulation results are shown in 
Figure 7. With �1 = 2, �2 = 0.3, TAF+ 

achieved the best performance 
for both interactions. Since there were too many combinations, we 
only show the performance of the best setting and two important 
baselines. TAF+ 

with the optimal hyperparameter outperformed 
the standard BO. Additionally, TAF (multi-objective) had benefts 
in the early iterations but struggled to improve quickly, indicating 
directly deploying TAF without a mechanism to balance population 
models and the adaptation model may hinder adaptation efciency. 
This issue would not exist if all the users had high similarities; 
the new user’s optimal design would be highly aligned with the 
population. Yet, this assumption may not hold in certain scenarios, 
e.g., our interactions. 

6.4 Summary 
Through this workfow, we derived (1) 14 population models, (2) 
optimal objective weights based on subjective ratings, and (3) 
optimal setting of hyperparameters (�1 and �2), which will be 
employed in the next adaptation phase. 

7 ADAPTATION: EVALUATING META-BO ON 
NEW USERS 

7.1 Experimental design 
11 entirely new participants were recruited for the evaluation study: 
6 males and 5 females, aged 23 − 42 (������ = 29.5). None of them 
have any experience pointing in VR or using VR. We conducted a 
within-subjects study with 2 independent variables: optimization 
procedure (meta-BO vs. standard BO vs. manual calibration) and 
iteration (10 iterations) for each of the pointing interactions. The 
procedures were counterbalanced using a Latin square. 

7.2 Adaptation procedures (meta-BO, BO, and 
manual) 

7.2.1 Meta-BO (TAF+). We set up TAF+ 
with 14 population mod-

els, optimized objective weights, and decay hyperparameters as 
described earlier10. 

7.2.2 Standard BO. For the BO procedure, we had 5 initial random 
samplings and 5 optimization iterations. These values were deter-
mined from a 4-participant pilot test. To ensure a fair comparison, 
BO optimizes for the same weighted-sum objective obtained in Step 
2, which TAF+ also optimizes for. Other hyperparameter settings 
are the same as in population modeling. 

7.2.3 Manual calibration. Diferent from meta-BO and BO, the 
users adjust the weight settings based on their perception unrelated 
to the weighted-sum objective. For absolute pointing, an established 
way to calibrate for similar interactions is to ask the users to indicate 
their preferred operational range, and then map the maximum 
detected values to the boundary of the interface (E.g. [28, 29]). We 
followed the same, mapping the user’s comfortable horizontal (yaw) 

We evaluated the efcacy of our meta-BO (TAF+) algorithm and 
workfow with 11 new participants for both pointing interactions. 10

The hyperparameter settings of the adaptation model followed the ones used in 
population modeling: a single-task GP with Matern 5/2 kernel and inferred noise levels. 

We evaluated against two baseline procedures: standard BO and 
For computation efciency, at each iteration, we generated 1024 parameter settings as 

manual calibration. candidates using a Sobol grid. 
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and vertical (pitch) forearm motion range to the scene boundaries 
along � , �. 

For relative pointing, we frst determined �� (correction param-

eter) for each user by using the radial-ulnar deviation of the user 
(corresponding to vertical cursor motion) since it has a smaller 
range than fexion-extension. The users were asked to perform 
radial-ulnar deviation to move the cursor back and forth between 
a top and a bottom target (Figure 6b). The diference between the 
recorded direction and the ideal vertical direction determined �� . 
Next, we calibrated the velocity function. Since �3 controls the 
overall scale of the transfer function, we viewed this parameter as 
the most critical parameter. Users did 12 random target selections 
during which they were allowed to adjust �3 by using a slider as 
many times as they wanted, similar to the sensitivity tuning of a 
computer mouse. As for �1 and �2, we used TAF+ 

to propose the 
�1 and �2 values assuming there is no adaptation model; i.e., these 
are the best suggestions based on the population data. The values 
are 0.914 (�1) and 1.438 (�2). Unlike meta-BO and BO, manual cali-
bration occurs before the data gathering. Once manual calibration 
was complete, the parameter values were fxed and did not change 
throughout the iterations. 

7.3 Study procedure 
Similar to step 1, participants performed relative pointing frst, 
followed by absolute pointing. Instructions were the same as be-
fore. Diferent from step 1, each procedure only had 10 iterations. 
Since there were 3 procedures (meta-BO, BO, and Manual) and 10 
iterations for each procedure, every pointing interaction had 30 
iterations in total. After each procedure, we asked the participants 
to fll out the NASA-TLX questionnaire to assess their subjective 
workload. Afterward, we conducted an open-ended interview to 
understand the participants’ experience. 

7.4 Results 
The weighted-sum performances at each iteration for both pointing 
interactions are shown in Figure 8. 

7.4.1 Absolute pointing: There were two independent variables: 
the adaptation procedures (meta-BO, BO, Manual) and the iter-
ations (1 - 10). A 2-way repeated-measures ANOVA with Green-
house–Geisser correction showed no statistically signifcant interac-
tion between the two variables (� (1.651, 21.729) = 1.684, � = 0.194). 
A simple main efects analysis found a signifcant diference be-
tween the procedures (� (2, 30) = 1.652, � = 0.027). Pairwise com-

parisons showed signifcant diferences between meta-BO and BO, 
and between meta-BO and Manual (both � < 0.05), which indi-
cated that meta-BO resulted in higher overall performances than 
the other two procedures. Overall, meta-BO enables performances 
that are on average 22.92% and 21.35% higher than BO and man-

ual calibration across the 10 iterations. The simple main efects 
analysis also showed a signifcant diference between the iterations 
(� (9, 100) = 2.171, � < 0.001). 

Another pairwise comparison between the iterations within each 
procedure found that for the meta-BO procedure, the performance 
did not signifcantly improve beyond iteration 6. On the other hand, 
BO still made signifcant improvements up to iteration 9. This indi-
cates that meta-BO converges faster to optimal performance. We 

conducted a pairwise comparison between procedures for each 
iteration (Figure 8) which shows that meta-BO consistently outper-
forms BO and Manual in several iterations. The detailed numbers 
for Figure 8 are provided in Appendix E. 

7.4.2 Relative pointing: A 2-way repeated-measures ANOVA 
showed no statistically signifcant interaction between procedure 
and iteration (� (1.922, 29.403)= 1.623, � = 0.188). A simple main ef-
fects analysis found a signifcant diference between the procedures 
(� (2, 30) = 7.231, � = 0.005). Pairwise comparisons showed signif-
cant diferences between the meta-BO procedure and BO procedure 
(� = 0.006) and between the meta-BO procedure and the Manual 
procedure (� = 0.033), which indicated that meta-BO resulted in 
higher overall performances than the other two procedures. Aver-
aging the performance of 10 iterations, meta-BO enables 25.43% 
and 13.60% better performances than BO and manual in relative 
pointing. A simple main efects analysis also showed a signifcant 
diference between the iterations (� (9, 100) = 44.795, � < 0.001). 
Pairwise comparisons between the iterations within each procedure 
showed that for meta-BO, the performance did not signifcantly 
improve after iteration 6. Meanwhile, BO improved up to iteration 
7. Similar to absolute pointing, meta-BO is faster to converge to op-
timal performance. We conducted a pairwise comparison between 
procedures for each iteration (Figure 8) which shows meta-BO 
consistently outperforms BO and Manual in several iterations. 

7.4.3 Other analyses: We found only one signifcant diference in 
the NASA-TLX questions: For absolute pointing, both Meta-BO and 
BO led to signifcantly lower frustration than the Manual procedure, 
indicating Meta-BO delivers better or comparable user experiences. 
This is mainly because the users needed to invest more efort in the 
calibration process but it did not lead to a better experience. From 
the interviews, we further learned that the participants’ experience 
is highly infuenced by the Index of Difculty of targets, than by the 
transfer function. More detailed analyses on perceived workload 
and user experience are presented in Appendix F. We further 
analyzed the individual metrics derived from the three procedures 
for both interactions, and found that meta-BO generally led to 
comparable or signifcantly better performances than the baselines. 
Please refer to Appendix G for more details and the plots of the 
individual metrics. Finally, each user’s performance is separately 
presented in Appendix H, and we visualized the objective function 
of absolute pointing in Appendix I. 

7.5 Findings and discussion 
Overall, we found that meta-BO allowed for signifcantly better 
performances than standard BO and manual calibration. For abso-
lute pointing, standard BO started with a lower initial performance 
which is not surprising since it was not informed by prior popula-
tion models. Standard BO further took more time to converge in 
both absolute and relative pointing. Even though meta-BO contin-
ued to improve until iteration 6, we can see that it reached near-peak 
performance by iteration 3, which translates to just 18 selections. 
Thus, meta-BO overcomes the slow start and slow convergence 
issues of standard BO for our tasks. 

With manual calibration, since the participant calibrates it in 
the beginning according to their preference, the expectation would 
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Figure 8: The performance (weighted-sum objective value over multiple objective functions) in 10 iterations. We have normalized 
all the objective functions into the range of [0, 1]. The error bar shows a 95% confdence interval. The red ∗ (meta-BO and 
BO), the black ∗ (meta-BO and Manual), and the blue ∗ (Manual and BO) signs denote a signifcant diference between two 
procedure at that iteration. Note that we showed “the best” performance reached from the beginning to each iteration. Since 
we are comparing the optimal performance given the same amount of iteration, this is the conventional way of showing and 
comparing the performance. Also note we have converted it to a maximization problem (see subsection 5.3). The detailed 
numbers of this fgure are presented in Appendix E. 

be that it will perform well at least in the beginning. While there 
are a few indications that the manual calibration procedure may 
have marginally better performance than BO, the diference is not 
signifcant. Thus, manual calibration does not guarantee an excel-
lent result. This could be because users may not fne-tune to the 
extent of fnding the optimal design. Even though the manual cali-
bration parameters did not change, its performance improved over 
time, presumably because the participants were adapting over time. 
However, despite user adaptation, meta-BO consistently outper-
forms manual calibration for iterations 3-8. Given that meta-BO 
as an online procedure can match explicit manual calibration in 
the beginning and outperform it in intermediary trials, it is a vi-
able candidate to replace explicit manual calibration procedures in 
real-world deployments. 

8 DISCUSSION 
In this work, we propose a novel HitL technique for rapid, online 
personalized parametric optimization for wrist-based input. It is 
known that adapting or optimizing transfer functions is challenging; 
wrist-based interaction adds further difculties due to wearabil-
ity and posture factors. We tackled the two most representative 
and distinct wrist-based input interactions. With just 14 users for 
population modeling, meta-BO outperforms the existing manual 
calibration and standard BO approaches for new users. This demon-

strates the specifc utility of meta-BO for interactions that beneft 
from personalized parametric settings. Meta-BO can eliminate ded-
icated calibration routines for wearable device interactions and 
help rapid attainment of optimal settings for each user. Given the 
results from two diferent pointing applications and a series of sim-

ulations and the fact that meta-BO does not have any overbearing 

assumptions (subsubsection 4.1.3), this work provides a meta-BO 
workfow that HCI researchers and practitioners can further apply 
to their applications and other problem contexts. We also showed 
how TAF+ 

extended the TAF approach for HitL applications. This 
involved the derivation of optimal objective weights based on 
users’ subjective ratings and confguring decay hyperparameters 
through simulations to balance the population and adaptation mod-

els. The optimal weight derivation occurs after population modeling 
in our workfow, allowing higher fexibility to tune the objective 
weights when needed. There are multiple open questions and 
limitations that future work can address. 

Encountering new users: Meta-BO utilized the similarities between 
prior users and new users to converge to optimal settings faster. To 
account for a new user that is drastically diferent and the potential 
of negative transfer, we introduced decay parameters to let the 
optimization proactively rely on the observations from the new 
user. Our results show that with only 14 population models, meta-

BO converges faster on new users on average. Further, we analyzed 
the individual users in Appendix H and found P5 (Table 14) as one 
example of a user who has drastically diferent optimal parameters 
from others. As we see in P5’s performance plotted in Figure 25, 
meta-BO is still able to converge to a performance comparable to 
the baselines. It also shows the benefts of having a diverse initial 
user set. Of course, when a user behaves even more extreme, such as 
wearing the device completely wrongly or their optimal parameter 
setting is beyond the parameter range, TAF+ 

can not adapt for 
such cases. To address this challenge, future work could consider 
developing mechanisms to diagnose a new user’s performance in 
real-time and switch to standard BO or manual optimization. 
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Enhancing the eficiency, scalability, and determining the objectvie 
weights: To enable more efcient calibration of wrist-based inter-
actions, it is worth exploring more advanced normalization tech-
niques to determine the quality of a setting with fewer selections. In 
addition, although TAF/TAF+ 

is relatively lightweight, its computa-

tion cost is linearly increased by the number of models, introducing 
difculties when scaling up the population models. This issue could 
be mitigated by calculating the �� and ���� in parallel. Further, the 
current approach to deriving optimal objective weights based 
on subjective ratings of the population may not be suitable for all 
new users. Future research could investigate deriving the individual 
user’s optimal objective weights by user feedback during adapta-
tion; preferential Bayesian optimization [30] may be incorporated 
in this direction. 

Potential co-adaptation: In the evaluation of TAF+, there were only a 
few observations in each adaptation procedure, and each parameter 
setting was evaluated only once, making it hard to detect user 
learning. Future work should consider developing methods that take 
the user to revisit certain parameter settings for better-estimating 
user learning. Also, more advanced computational methods are also 
needed to infer the user’s learning. 

Multi-objective TAF:. Meta-BO is an emerging topic with many 
open research questions and opportunities. The feld of HCI can 
beneft highly from it. In addition to applying TAF+ 

to other ap-
plications, future research can investigate other meta-BO methods 
for HitL optimization. One potential direction is extending TAF 
for multi-objective tasks by changing the base acquisition function 
to Expected Hypervolume Increase (EHVI). We ran a simulation 
with this approach using the population models, and the results 
showed that TAF outperformed the standard multi-objective BO, 
as plotted in Appendix J. However, multi-objective TAF would 
require the end-users to engage with extreme designs that heavily 
prioritize one objective while neglecting others. Further, one would 
need a heuristic to select one design from the Pareto-frontier which 
may or may not be the one preferred by the user. Alternatively, 
the user will need to manually determine one fnal setting among 
the Pareto-frontier through trials, which will introduce more efort 
to the users. Finally, the time required for computing the multi-

objective TAF to yield the next parameter setting during adaptation 
is massive for each iteration because the computation complexity 
is � (the total number of models) multiplied by the complexity for 
computing EHVI from a model. Thus, it would be unsuitable for 
online adaptations which require a fast turn-around time. 

9 CONCLUSION 
In this paper, we present an online, fast-converging parametric opti-
mization procedure through meta-Bayesian optimization. We intro-
duce a novel meta-BO algorithm, TAF+, and a tailored workfow to 
meet the unique requirements of human-in-the-loop problems. We 
apply TAF+ 

and its workfow to two distinct wrist-based interac-
tions. The positive result and the outcome of each step showcase the 
efectiveness and efciency of meta-BO compared to conventional 
calibration procedures and state-of-the-art BO. Calibration is a com-

mon practice among HCI practitioners and researchers, typically 
created by developers or designers. Crafting an efective calibration 

procedure is challenging and often specifc to a particular device or 
interaction. Moreover, our study indicated that manual calibration 
does not always yield optimal results. Our success in wrist-based 
pointing demonstrates that meta-BO holds signifcant potential as a 
general calibration method across various interactions and devices, 
eliminating the difculties associated with designing calibration 
procedures and achieving a better user experience. We encourage 
future research to explore the application of meta-BO for optimiz-

ing parameter settings across diverse applications, both within HCI 
and beyond. We anticipate this work will pave the way for more 
personalized and adaptive user interfaces. 
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A DETAILS OF OBJECTIVE WEIGHTS 
OPTIMIZATION 

A.1 A demonstrative example of objective 
weights optimization with two users 

To explain the need for the across-user objective weight optimiza-

tion approach in step 2 of our workfow, we provide an example 
where two users are involved. User A’s and User B’s Pareto-optimal 
performances are presented in Table 4 and Table 5, respectively. 
Only by examining User A’s profle (Table 4), design B has the 
highest user rating, and its third objective has the highest value. 
Therefore, setting weights as [0.1, 0.1, 0.8] is a straightforward con-
fguration that leads to the highest user rating. On the other hand, 
examining only User B’s profle (Table 5), design A has the highest 
user rating, and its frst objective has the highest value, so one could 
conclude with weights [0.8, 0.1, 0.1]. However, looking at the group 
level, setting weights as [0.1, 0.1, 0.8] or [0.8, 0.1, 0.1] to both users 
at the same time would result in the other user ending up with a 
suboptimal design (i.e., the design not associated with the highest 
user rating). On the contrary, with an appropriate search, setting 
objective weights as [0.4, 0.2, 0.2] would allow both users to end 
up having the designs with the highest ratings. With more users 
taken into consideration, it becomes increasingly challenging to 
directly see which objective weight confguration is optimal for 
the group. Hence, a principled grid search is an easier and more 
principled approach. 

A.2 Algorithm for Objective Weight 
Optimization 

Altorighm 1 presents the details of objective weight optimiza-

tion. 

Weighted-sum Weighted-sum Weighted-sum 
Pareto-optimal Original 

objective value objective value objective value User rating 
designs/settings objective values 

(weights=[0.8, 0.1, 0.1]) (weights=[0.1, 0.1, 0.8]) (weights=[0.4, 0.2, 0.4]) 

A [7, 2, 5] 6.4 4.9 4.8 20 
B [5, 4, 8] 5.2 7.3 6.4 100 
C [3, 9, 2] 3.5 2.8 3.8 1 

Table 4: The table shows a set of Pareto-optimal designs in a three-objective optimization problem of an example User A. 
Intuitively, setting the objective weights as [0.1, 0.1, 0.8] would easily end up having design B, which has the highest user 
rating (100). However, when taking the second user (presented in Table 5) into consideration, [0,1, 0.1, 0.8] would bring the 
suboptimal design (i.e., not associated with the highest rating) to the other. However, setting objective weights as [0.4, 0.2, 
0.4] leads to the design of the highest ratings for both users. 

Weighted-sum Weighted-sum Weighted-sum 
Pareto-optimal Original 

objective value objective value objective value User rating 
designs/settings objective values 

(weights=[0.8, 0.1, 0.1]) (weights=[0.1, 0.1, 0.8]) (weights=[0.4, 0.2, 0.4]) 

A [8, 3, 5] 7.2 5.1 5.8 100 
B [2, 1, 7] 2.4 5.9 3.8 50 
C [4, 4, 3] 3.9 3.2 3.6 1 

Table 5: The table shows a set of Pareto-optimal designs in a three-objective optimization problem with an example User 
B. Intuitively, setting the objective weights as [0.8, 0.1, 0.1] would end up having design A, which has the highest user 
rating (100). However, this weight setting is not optimal for the other user (presented in Table 4). While not intuitive, setting 
objective weights as [0.4, 0.2, 0.4] leads to the designs with the highest ratings for both. 
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Algorithm 1 Optimize objective weight confguration based on user ratings. 

Inputs: 
� ∈ [1, � ] for there are � users in total; � stands for the �-th user among all users. 
�� is the total number of Pareto-optimal designs for the �-th user. For instance, the 5th user 

tries out 10 parameter settings, and 3 of them result in Pareto-optimal performance; 
then �5 = 3. 

� ∈ [1, �� ] denotes the �-th user’s �-th Pareto-optimal design. 
��� [1..�] is the �-th user’s �-th Pareto-optimal objective value set, which contains 

� 
� objective functions. 

�� 
is the �-th user’s rating for the �-th Pareto-optimal designs. 

� 
2: Outputs: 

�������_����ℎ� [1..�], an optimal weight setting for � objectives. 
Initialize: 

����ℎ�� ← All possible non-zero weight combinations to the frst decimal point. 
(e.g., ����ℎ�� [0] = [0.8, 0.1, 0.1], ����ℎ�� [1] = [0.7, 0.2.0.1] ...) 

scores ← [] 
4: for � ∈ [1, � ] do ⊲ Normalize user ratings. 

���� ← max(� � ) ⊲ Get the maximum rating of user j. 
6: ���� ← min(� � ) ⊲ Get the minimum rating of user j. 

for � ∈ [1, �� ] do 

� −���� 
8: �� ← 1 + 99 · 

�� 

⊲ Normalize the user rating to be in the range of [1, 100]. 
� ���� −���� 

end for 
10: end for 

for ����ℎ� ∈ ����ℎ�� do ⊲ Start the actual optimization. Loop over all the weight settings. 
12: score_of_this_weight = 0 

for � ∈ � do ⊲ Loop over every user. 
14: index ← argmax(

Í 
�
� 
=1 ����ℎ� [�] · ��� [�]) ⊲ Get the index of the highest weighted sum. 

� 
� ∈�� 

score_of_this_weight ← score_of_this_weight +������ ⊲ Add the rating of the highest value to the score. 
� 

16: end for 
scores.append(score_of_this_weight) 

18: end for 
fnal_index ← argmax(scores) ⊲ Get the index of the weight setting with the highest score. 

20: optimal_weight ← weights[fnal_index] ⊲ Get the optimal weight setting. 
return optimal_weight ⊲ Return the optimal weight setting. 
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Parameters Corresponding Objective Functions Range 

�1 

�2 

�3 

�4 

Sphere 1, center = (0.55, 0.4) 
Sphere 1, center = (0.55, 0.4) & Sphere 2 (center = (0.6, 0.45) 
Sphere 2, center = (0.6, 0.45) & Sphere 3, center = (0.65, 0.35) 
Sphere 3, center = (0.65, 0.35) 

[0, 1] 
[0, 1] 
[0, 1] 
[0, 1] 

Table 6: The parameters of the base function used in our Simulation 1 and Simulation 2. Here we present the corresponding 
objective functions of each parameter and the parameters’ ranges. 

B EVALUATING TAF+’S VIABILITY VIA 
SIMULATIONS ON SYNTHETIC FUNCTIONS 

We evaluate the performance of our proposed TAF+ 
in multi-

objective tasks through simulations with commonly used testing 
functions. For the evaluation of TAF in single-objective problems, 
please refer to Wistuba et al. [100] and Volpp et al. [93]. Here, we 
aim to answer four goals through these simulations: 

• Simulation 1: Evaluating the robustness of TAF+ 
under di-

verse objective weight confgurations. 
• Simulation 2: Validating the efectiveness of TAF+ 

under 
varying levels of user similarity. 

• Simulation 3: Investigating the generalizability of TAF+ 

across diferent testing functions. 
• Simulation 4: Investigating the performances of TAF+ 

with 
diferent numbers of population models. 

B.1 Base function for simulation 1 and 
simulation 2 

In Simulations 1 and 2, we utilize the same base function, which has 
four design parameters and three objective functions. The number 
of parameters and functions aligns with our relative pointing in-
teraction. Specifcally, we have adopted the 2-dimensional Sphere 
function

11 
as our choice for objective functions. To elaborate fur-

ther, our Sphere function is mathematically defned as follows: 
� = 1 − 

Í 
� 
2 
=1 (�¤� − �� )2 × � . Here, �¤� represents the selected value 

of a design parameter, and �� denotes the center of the square 
function. This Sphere function has its maximum objective value 
(� = 1) when the selected �¤ is right at the center position; i.e., 
(�¤1, �¤2) = (�1, �2). As the parameter values deviate from this cen-
tral point, the objective values gradually decrease. We incorporate 
an additional coefcient � , set to be 8, to accelerate the rate of 
decay in the function. We chose the Sphere function for two rea-
sons. Firstly, it efectively simulates the real-world scenario where 
a user’s performance gradually decreases as they deviate from the 
optimal design parameter setting. Secondly, the Sphere function is 
widely recognized and used for similar optimization evaluations. 

We then utilize the Sphere function to construct the base func-
tion, which contains four parameters (�1, �2, �3, �4) and 3 objective 
functions (�1, �2, �3). Details are provided in Table 6. We frst create 
three distinct Sphere functions, each having a unique center posi-
tion (�1, �2). Consequently, there is no single parameter setting that 
maximizes all three Sphere functions simultaneously. Furthermore, 
the frst two parameters in the base function (�1, �2) contribute to 
the frst Sphere function, (�2, �3) contribute to the second Sphere 

function, and (�3, �4) contribute to the third Sphere function. Param-

eters �2 and �3 are shared by two Sphere functions. This decision 
was made to introduce trade-of scenarios: there exists no single �2 
or �3 value that can optimize both Sphere functions. Thus, when 
performing multi-objective optimization, the outcome comprises 
a series of Pareto-optimal values but not a single optimal value, 
which simulates the trade-ofs in real-world design challenges. The 
range of the parameters is [0, 1] and the range of the objective 
values is roughly [−1, 1]. 

Finally, when obtaining the output (�) from the Sphere functions, 
we introduce a noise value for mimicking humans’ noisy perfor-
mance. The noise value is sampled from a Gaussian distribution, 
denoted as ����� ∼ N(�, �2), where � = 0 and � = 0.05. 

B.2 Generating synthetic users and user groups 
In our simulations, we shift and scale the base function to create 
a group of testing functions, which is a common approach [24]12. 
We also call these generated testing functions as user functions or 
synthetic users. Each created user function can be seen as a unique 
user as it has its own set of Pareto-optimal parameter settings and 
the corresponding objective values. More specifcally, we shift every 
parameter value in the base function (�1, �2, �3, �4) by diferent 
amounts. Figure 9(a) shows as an example. The magnitudes of these 
shifts are sampled from a uniform distribution within given ranges. 

′
We can formally denote this shifting as � = �� + �� , where �� � 

′
is the original parameter value, �� is the shifted value, � ∈ {1, 4}
(each represents a parameter), and the shifting for each parameter 

is �� ∼ � (− �ℎ� � � _����� �ℎ� � � _����� , ).
2 2 

In addition to shifting the base function, we also scale the 
objective function values to further generate diversity. A scalar 
is directly multiplied by the objective value; see Figure 9(b) as 
an example. Such a scalar is drawn from a uniform distribution 
where 1 is the center. We denote this function scalar as S ∼ 

�����_����� �����_����� 
� (1 − , 1 + ). When the scalar (�) exceeds 

2 2 
1, the maximum value of the function will go beyond 1. Conversely, 
if � is less than 1, it reduces the function output value. An example 
is illustrated in Figure 9 (b). This scaling simulates the diferent 
levels of performance exhibited by diferent users. 

To simulate diferent scenarios where the user groups have var-
ious levels of similarities, we sample function shifting (�) and 
scalar (S) from diferent ranges (�ℎ� � �_����� and �����_�����). 
In the below simulations, we deployed diferent �ℎ� � �_����� and 
�����_����� . A small range naturally generates a group of functions 
with the highest similarities, simulating a highly similar user group. 
An illustrated example is illustrated in Figure 9(c). Conversely, a 

12
The frst fgure in https://botorch.org/tutorials/meta_learning_with_rgpe also 

11
See https://www.sfu.ca/~ssurjano/spheref.html. presents an example of shifting and scaling. 

https://www.sfu.ca/~ssurjano/spheref.html
https://botorch.org/tutorials/meta_learning_with_rgpe
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c dba

Figure 9: Here we use a typical Gaussian distribution to illustrate how we generate a group of testing functions by shifting 
and scaling a base function: (a) demonstration of shifting a base function, (b) demonstration of scaling a base function, (c) an 
example user group with a higher similarity, (d) an example user group with higher diversity. 

large range leads to a group of highly diverse functions, mimicking 
a group of very diversifed users. See Figure 9(d) for an illustrated 
example. 

In each of the following simulations, we randomly sample 20 
shifting (�) and scaling (S) to create 20 distinct synthetic users, each 
representing a user. Among these 20 synthetic users, 10 of them are 
designated as "population users." We perform population modeling 
on these users. The remaining 10 functions are considered "new 
users." TAF+, is subsequently applied to these new synthetic users. 

B.3 Simulation 1: Validating the robustness of 
TAF

+ 
under various objective weight 

settings 
One important feature of our TAF+ 

is that it allows the design-
ers or developers to dynamically assign the objective weights 
when performing weighted-sum optimization in the adaptation 
phase. Simulation 1 aims to investigate whether TAF+ 

can main-

tain stable performance across varying objective weights. Note 
that the three Sphere functions in our base function have distinct 
optimal parameter values, and two parameters (�2, �3) are shared 
by two Sphere functions. Thus, altering the objective weights 
in weighted-sum optimization results in diferent sets of optimal 
parameter settings. Since our focus is on assessing the impact of 
objective weight assignments, we intentionally chose the small-

est sample range to create the user group: both �ℎ� � � _����� and 
�����_����� are set to be 0.01. 

Step 1: Population modeling via a user data collection. 
Following our workfow (see subsection 4.2), we performed multi-

objective BO to construct 10 population models
13
. The progress is 

plotted in Figure 10. 
Step 2 & 3: Objective weight and decay hyperparameter 

setting. To test the performance of TAF+ 
under a wide spectrum 

of objective weights, we deliberately test 6 sets of objective 
weights ([1, 0, 0], [0, 1, 0], [0, 0, 1], [0.33, 0.33, 0.34], [0.5, 0.3, 0.2], 
and [0.3, 0.5, 0.2]) when deploying TAF+ 

on the new users (func-
tions). Since this group of users has high similarity, there is no 
population model decay applied in this simulation (for details re-
garding such a decay, please see subsection 4.1). 

Adaptation: Evaluating TAF+ 
on new users. We applied 

TAF
+14 

on 10 new users (unseen user functions). We further applied 
standard BO15 

and random sampling as baseline conditions. The 
resulting performances of TAF+ 

when objective weights are set 

13
The hyperparameter setting of multi-objective BO is the same as introduced in 

subsection 6.1 with 20 initial random samples followed by 20 optimization iterations.
14
The hyperparameter settings are similar to subsection 7.2 with 256 random sampling 

when calculating TAF+ 
values. 

15
The hyperparameter setting is as introduced in subsection 7.2 of the main paper 

with 20 initial random sampling and 20 optimization iterations. 
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Figure 10: The hypervolume per iteration during the population modeling in simulation 1. The random condition was to serve 
as a baseline. The error bar denotes a 95% confdence interval. The global maximum hypervolume was determined by a grid 
search when there was no noise involved. 

as [1, 0, 0], [0, 1, 0] (Figure 11), [0, 0, 1], [0.33, 0.33, 0.34] (Figure 12), 
[0.5, 0.3, 0.2], and [0.3, 0.5, 0.2] (Figure 13) are plotted below. 

Findings. Overall, TAF+ 
performs stably across diferent objec-

tive weight confgurations. It consistently converges to the global 
maximum value with 3 or 4 iterations. This result highlights the 
advantage of using multi-objective BO in population modeling: it 
efectively allows the designers to tune the objective weights 
when needed while maintaining high efciency when deploying 
TAF

+
. Conversely, such fexibility would not exist if the population 

modeling phase deployed weighted-sum single-objective BO. 

B.4 Simulation 2: Validating the efectiveness of 
TAF

+ 
under diferent user group similarities 

In the second simulation, we aim to understand the performance 
of TAF+ 

when dealing with diferent levels of similarities in the 
user group. To that end, we modify the sampling range of shifting 
(�ℎ� � �_�����) and scaling (�����_�����) when generating the test-
ing functions. Diferent sampling ranges will result in functions of 
diferent levels of similarities. The sampling ranges in this simula-

tion are 0.05, 0.1, 0.2, and 0.3. Particularly, a shifting range of 0.3 
can create a huge diversity, given that the whole parameter range 
is only 1. Similar to Simulation 1, we sampled 20 functions for each 
sampling range; 10 serve as population users, and the remaining 10 
serve as new users. 

Step 1: Population modeling via user data collection. Similar 
to the previous simulation, for each sampling range, we performed 
multi-objective BO to construct 10 population models

16
. The result-

ing hypervolumes are plotted in Figure 14 and Figure 15. Despite 
the increasingly higher variations between functions (indicated by 
the error bar), multi-objective BO can efectively explore the Pareto 
frontier for each group. 

Step 2 & 3: Objective weight and decay hyperparame-

ter setting. To focus on investigating the efect of user similarity, 
we fxed the objective weight at [0.3, 0.5, 0.2] throughout this 
simulation. We followed the workfow (see subsection 6.3) to opti-
mize the decay hyperparameter settings (�1 and �2) For sampling 
range 0.05, the optimal hyperparameter setting is (�1, �2) = (7, 0.1). 
For sampling range 0.1, the optimal hyperparameter setting is 

16
The hyperparameter setting of multi-objective BO is the same as introduced in 

subsection 6.1 with 20 initial random samples followed by 20 optimization iterations. 
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Objective weights = [1, 0, 0] Objective weights = [0, 1, 0]

Figure 11: The resulting performance of TAF+ 
when the objective weights are [1, 0, 0] and [0, 1, 0], and the population modeling 

has � and S are sampled from range of 0.01. The error bar indicates a 95% confdence interval. The global maximum objective 
value was determined by a grid search when there was no noise involved. 

Objective weights = [0, 0, 1] Objective weights = [0.33, 0.33, 0.34]

Figure 12: The resulting performance of TAF+ 
when the objective weights are [0, 0, 1] and [0.33, 0.33, 0.34], and the population 

modeling has � and S are sampled from range of 0.01. The error bar indicates a 95% confdence interval. 

(�1, �2) = (4, 0.1). For sampling range 0.2, the optimal hyperpa-
rameter setting is (�1, �2) = (4, 0.2). For sampling range 0.3, the 
optimal hyperparameter setting is (�1, �2) = (3, 0.2). These optimal 
decay settings show that as the user diversity increases, the decay 
should happen earlier and faster to allow for better adaptation of 
the new user’s characteristics. 

Adaptation: Evaluating TAF+ 
on new users. We applied TAF+ 

on 10 new user functions. Standard BO and random sampling are 
set as baselines. The resulting performances of TAF+ 

are presented 
in Figure 16 and Figure 17. 

Findings. TAF+ 
overall performs well across diferent sampling 

ranges. Upon closer examination, we noted that greater diversity, 
such as sampling from ranges of 0.2 or 0.3, results in a lower starting 
performance for TAF+. This outcome is natural, as higher sampling 
ranges introduce potentially larger diferences between the popu-
lation users and the new users, necessitating more iterations for 
TAF

+ 
to adapt to the new user functions. However, despite the 

lower starting point, TAF+ 
still converges to the maximum objec-

tive value within 10 iterations. This highlights TAF+’s potential 
even when being applied to an interaction where users exhibit high 
diversity in their preferences and performances. 
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Objective weights = [0.5, 0.3, 0.2] Objective weights = [0.3, 0.5, 0.2]

Figure 13: The resulting performance of TAF+ 
when the objective weights are [0.5, 0.3, 0.2] and [0.3, 0.5, 0.2], and the population 

modeling has � and S are sampled from range of 0.01. The error bar indicates a 95% confdence interval. 

Sampling range = 0.05 Sampling range = 0.1

Figure 14: The hypervolume per iteration during the population modeling in Simulation 2. The random condition was to serve 
as a baseline. The error bar denotes a 95% confdence interval, and the maximum volume is determined by a thorough grid 
search. 

B.5 Simulation 3: Validating the generalizability 
of TAF+ 

with diferent testing functions 
From the previous two simulations, we demonstrated the consistent 
performance of TAF+ 

when facing the three-sphere base function. 
In the third simulation, we investigate the efcacy of TAF+ 

when 
facing other, potentially more challenging, base functions. These 
diferent base functions are introduced, simulating diferent inter-
actions. There are three base functions in this simulation: 

• Relocated Spheres: This base function is similar to the one 
used in the previous simulations, which contains 3 Sphere 

functions. However, the Spheres here have diferent and 
further apart center locations. See Table 7. 

• Spheres + Branin: This base function has two Sphere functions 
and a Branin17. Branin is a commonly used function for 
testing optimization and it is considered more challenging 
than Sphere. Details are in Table 8. 

17
Please see http://www.sfu.ca/~ssurjano/branin.html for more details. We normalized 

the parameter space into [0, 1] range, and reversed the function so that it becomes a 
maximization problem. 

http://www.sfu.ca/~ssurjano/branin.html
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Sampling range = 0.2 Sampling range = 0.3

Figure 15: The hypervolume per iteration during the population modeling in Simulation 2. The random condition was to serve 
as a baseline. The error bar denotes a 95% confdence interval, and the maximum volume is determined by a thorough grid 
search. 

Sampling range = 0.05 Sampling range = 0.1

Figure 16: The resulting performance of TAF+ 
when the functions’ shifting (�) and scaling (S) are sampled from range of 0.05 

and 0.1. The error bar indicates a 95% confdence interval. 

• Sphere + Branin + Hartmann 3D: This base function is further 
complicated. It contains a Sphere, a Branin, and a Hartmann 
3D

18
. Hartmann 3D is a function that takes 3 parameters 

as input, and it is also a widely recognized testing function. 
Note that �2 in this function is shared by three functions, 
which added more complexity to this task. Details of this 
function are in Table 9. 

18
Please see https://www.sfu.ca/~ssurjano/hart3.html for more details. We reversed 

the function so that it becomes a maximization problem. 

We set the sampling range as 0.1 for both function shifting (�) 
and scaling (S) when generating user functions. Same as in previous 
simulations, we sampled 20 user functions; 10 serve as population 
users, and the remaining 10 serve as new users. 

Step 1: Population modeling via user data collection. We 
followed the same procedure, using multi-objective BO, to construct 
population models. The resulting hypervolume is plotted in Fig-
ure 18. Because Spheres + Branin and Sphere + Branin + Hartmann 
3D functions are more challenging than the three-Sphere function, 

https://www.sfu.ca/~ssurjano/hart3.html
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Sampling range = 0.2 Sampling range = 0.3

Figure 17: The resulting performance of TAF+ 
when the functions’ shifting (�) and scaling (S) are sampled from range of 0.2 

and 0.3. The error bar indicates a 95% confdence interval. 

Parameters Corresponding Objective Functions Range 

�1 Sphere 1, center = (0.55, 0.3) [0, 1] 
�2 Sphere 1, center = (0.55, 0.3) & Sphere 2 (center = (0.8, 0.35) [0, 1] 
�3 Sphere 2, center = (0.8, 0.35) & Sphere 3, center = (0.7, 0.4) [0, 1] 
�4 Sphere 3, center = (0.7, 0.4) [0, 1] 

Table 7: The parameters of the Relocated Spheres base function. 

Parameters Corresponding Objective Functions Range 

�1 Sphere 1, center = (0.55, 0.3) [0, 1] 
�2 Sphere 1, center = (0.55, 0.3) & Branin [0, 1] 
�3 Branin & Sphere 2, center = (0.7, 0.4) [0, 1] 
�4 Sphere 2, center = (0.7, 0.4) [0, 1] 

Table 8: The parameters of the Spheres + Branin base function. 

Parameters Corresponding Objective Functions Range 

�1 Sphere 1, center = (0.55, 0.3) [0, 1] 
�2 Sphere 1, center = (0.55, 0.3) & Branin & Hartmann 3D [0, 1] 
�3 Branin & Hartmann 3D [0, 1] 
�4 Hartmann 3D [0, 1] 

Table 9: The parameters of the Sphere + Branin + Hartmann 3D base function. 

we extended the optimization iterations to ensure the quality of the 
population models. 

Step 2 & 3: Objective weight and decay hyperparameter 
setting. Similar to Simulation 2, we set the objective weight at 
[0.3, 0.5, 0.2] in this simulation. We followed the workfow to opti-
mize the decay hyperparameter settings, and the resulting optimal 
setting is (�1, �2) = (4, 0.1). 

Adaptation: Evaluating TAF+ 
on new users. We deployed 

TAF
+ 
on 10 new users. The resulting performances of TAF+ 

com-

pared against BO and random sampling are presented in Figure 19. 

Findings. The results highlight the promising performance of 
TAF

+ 
when facing diferent sets of functions, demonstrating the 

potential generalizability of TAF+ 
for diferent scenarios and in-

teractions. It is also worth noting that BO encounters challenges 
in efciently reaching optimal objective values when applied to 
more complex functions, such as mixing Branin, Sphere, and Hart-
mann 3D. However, with the aid of population models, TAF+ 

is 
able to leverage the prior experience to address such complex func-
tions efciently; which further showcases the generalizability of 
our approach when facing challenging optimization problems. 
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Relocated Spheres Spheres + Branin Sphere + Branin + Hartmann 3D

Figure 18: The resulting performance of TAF+ 
when the functions’ shifting (�) and scaling (S) are sampled from range of 0.05 

and 0.1. The error bar indicates a 95% confdence interval. 

Relocated Spheres Spheres + Branin Sphere + Branin + Hartmann 3D

Figure 19: The resulting performance of TAF+ 
when the functions’ shifting (�) and scaling (S) are sampled from ranges of 0.2 

and 0.3. The error bar indicates a 95% confdence interval. 

B.6 Simulation 4: Investigating the performance 
of TAF+ 

under diferent population model 
sizes 

In this simulation, we aim to evaluate the performance of TAF+ 

when it has various numbers of population models. We utilized the 
3-Sphere base function, the same as Simulations 1 and 2 (see Table 6). 
The sampling ranges (�ℎ� � �_����� and �����_�����) are set to be 
0.2, and the results are presented in Figure 20. We do not present the 
details of population modeling and decay hyperparameter setting 
as they are the same as in previous simulations 1 and 2. 

Adaptation: Evaluating TAF+ 
with diferent numbers of 

population models. The resulting performance over iterations 
are shown in Figure 20. Overall, with a higher number of the popu-
lation model, TAF+ 

potentially has a better starting performance. 
However, regardless of the number of population models, with suf-
fcient iterations and proper decay hyperparameter confguration, 
TAF

+ 
can still converge toward optimality. 

Figure 20: The resulting performance of TAF+ 
when the num-

ber of population models varies. 
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Figure 21: The resulting hypervolume per iteration for both interactions during population modeling. The error bar denotes a 
95% confdence interval. 

B.7 Overall fndings of the simulations 
The above simulations collectively demonstrate the robustness of 
TAF

+ 
under diverse conditions, highlighting its adaptability and 

generalizability. 
Simulation 1 examines TAF+ 

under varying objective weights, 
and the positive results highlight the fexibility of adjusting the 
objective weights when deploying TAF+. This fexibility is par-
ticularly useful when conducting weighted-sum optimization for 
real-world interactions, where designers may need to fne-tune the 
weighting on objectives. Simulation 2 assesses TAF+’s performance 
under diferent levels of user diversity, and the results showed 
TAF

+
’s efectiveness under diversifed user groups, highlighting 

TAF
+
’s ability to adapt to diferent user performances and pref-

erences. Simulation 3 validates TAF+’s generalizability across a 
variety of base functions. Despite the increasing challenges of the 
functions, TAF+ 

retains promising performance whereas standard 
BO may not be able to converge efciently. Simulation 4 shows the 
impact of diferent numbers of population models. While the less 
population models may lead to a lower initial performance, TAF+ 

can converge more efciently than standard BO. To summarize, the 
results and fndings provide evidence that TAF+ 

is adaptable and 
capable of handling a wide spectrum of problems with diferent 
levels of difculties and conditions. 

Finally, to further assess the computation complexity, the frst 
3 simulations with 10 population models were run on a ThinkPad 
X1 Carbon, with Ubuntu 22.04.3 OS and an Intel i7-10150U CPU. 
Throughout these simulations, TAF+’s computation time for each 
iteration is 6.17 seconds (� .� . = 1.17). 

C HYPERVOLUME INCREASE IN 
POPULATION MODELING 

Figure 21 shows the hypervolume of both interactions at each 
iteration during the population modeling. 

D EXTENDED SIMULATION FOR THE DECAY 
HYPERPARAMETER OPTIMIZATION 

To validate the convergence of the optimization methods, we ex-
tended the decay hyperparameter optimization. Figure 22 shows the 
extended simulation for the decay hyperparameter optimization. 
The result shows that TAF+, TAF, and BO all converge near the 
global max given enough iterations. 
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Figure 22: The resulting performance under simulation. The max performance was derived by a grid search. 

E DETAILS OF THE EVALUATION 
Here, we provide the detailed numbers of the evaluation, which 
complements Figure 8. Table 10 and Table 11 list all the mean and 
standard deviation of weighted-sum performance in absolute point-
ing and relative pointing, respectively. We also found the overall 
performance is better than the estimated performance in step 3 
(decay hyperparameter optimization, and see Figure 7). We exam-

ined the performance we gathered in step 1 (population modeling) 
and compared it to the performance gathered in adaptation19. With 
t-test, we found a signifcant diference (� (23) = −3.576, � = 0.02) 
between the population user group (mean = 72.87, � .�. = 0.114) and 
the adaptation user group (mean = 0.87, � .� . = 0.11). The diference 
in the performance levels may cause the overall diference in abso-
lute pointing between Figure 7 and Figure 8. The positive result in 
Figure 8 also validates the efcacy of TAF+ 

when the users have 
diferent levels of performance. 

Table 10: The mean and standard deviation of the weighted-

sum performance at each procedure in absolute pointing. 

# of Iteration Meta-BO BO Manual 

1 0.64 (s.d. = 0.09) 
2 0.71 (0.08) 
3 0.79 (0.05) 
4 0.81 (0.03) 
5 0.83 (0.03) 
6 0.85 (0.03) 
7 0.86 (0.03) 
8 0.87 (0.02) 
9 0.87 (0.02) 
10 0.87 (0.02) 

0.31 (s.d. = 0.08) 0.42 (s.d. = 0.1) 
0.56 (0.07) 0.57 (0.08) 
0.62 (0.06) 0.70 (0.07) 
0.70 (0.05) 0.61 (0.07) 
0.71 (0.05) 0.66 (0.07) 
0.71 (0.05) 0.72 (0.06) 
0.72 (0.05) 0.74 (0.06) 
0.75 (0.05) 0.75 (0.05) 
0.75 (0.05) 0.78 (0.05) 
0.75 (0.05) 0.80 (0.04) 

19
For each user, we frst derived the highest weighted-sum performance, and then 

we compared the optimal performance of the population users and the users in the 
adaptation phase. 

Table 11: The mean and standard deviation of the weighted-

sum performance at each procedure in relative pointing. 

# of Iteration Meta-BO BO Manual 

1 0.27 (s.d. = 0.07) 
2 0.46 (0.05) 
3 0.60 (0.03) 
4 0.62 (0.04) 
5 0.66 (0.03) 
6 0.68 (0.02) 
7 0.68 (0.02) 
8 0.68 (0.02) 
9 0.68 (0.02) 
10 0.70 (0.02) 

0.14 (s.d. = 0.05) 0.31 (s.d. = 0.05) 
0.35 (0.07) 0.42 (0.06) 
0.37 (0.06) 0.50 (0.05) 
0.43 (0.05) 0.50 (0.05) 
0.53 (0.04) 0.50 (0.05) 
0.55 (0.04) 0.58 (0.03) 
0.59 (0.04) 0.59 (0.03) 
0.61 (0.03) 0.61 (0.03) 
0.61 (0.03) 0.63 (0.03) 
0.61 (0.03) 0.64 (0.04) 
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Table 12: The mean and standard deviation of the raw NASA-TLX scores in absolute pointing. One-way repeated-measures 
ANOVAs showed that the only signifcant diference was found in the sixth question where both Meta-BO and BO led to 
signifcantly lower scores than the Manual procedure. 

Questions Meta-BO BO Manual 

1. How mentally demanding was the task? 6.55 (s.d. = 4.76) 5.64 (s.d. = 3.67) 8.64 (s.d. = 5.46) 
2. How physically demanding was the task? 7.91 (4.93) 6.45 (2.73) 9.18 (4.83) 
3. How hurried or rushed was the pace of the task? 5.18 (4.69) 3.73 (3.32) 4.91 (3.67) 
4. How successful were you in accomplishing what you were asked to do? 4.45 (3.46) 2.91 (1.97) 5.18 (4.14) 
5. How hard did you have to work to accomplish your level of performance? 9.09 (4.91) 7.73 (3.04) 9 (5.98) 
6. How insecure, discouraged, irritated, stressed, and annoyed were you?* 3.82 (2.67) 3.82 (3.16) 8 (5.67) 

F ANALYSIS ON THE PERCEIVED WORKLOAD 
AND USER EXPERIENCE 

We present the detailed result of the NATA-TLX questionnaire in 
Table 12 and Table 13 for absolute pointing and relative pointing, 
respectively. We performed one-way repeated measures ANOVA 
with Greenhouse-Geisser correction on each question individually. 
The only statistically signifcant diference was found in the 6th 
question, which is related to the perceived frustration (“How in-
secure, discouraged, irritated, stressed, and annoyed were you?”), 
in absolute pointing (� (1.26) = 6.735, � < 0.05). Pairwise compar-

ison with Bonferroni correction showed that both Meta-BO and 
BO led to signifcantly lower frustration levels than Manual (both 
� < 0.05). In the interview, most participants refected on the fact 
that the manual calibration is time-consuming and not bringing 
a better experience is frustrating and unwanted. We did not fnd 
signifcant diferences for the rest questions in both interactions. 
Overall, these results indicate that Meta-BO delivers a comparable 
or better experience to the users than other procedures. 

F.1 User experience 
Based on the user interviews, we learned that most users felt both 
TAF

+ 
and BO gradually proposed improving designs. Interestingly, 

six users felt BO proposed abrupt parameter settings. P1 mentioned, 
“[...] this round (BO) has more noticeable changes. It suddenly changed 

speeds (the transfer function) [...] It was a bit unexpected.” P5 made 
a similar remark, “It feels a bit more unstable than the previous 
ones (TAF+ and Manual). Overall, it still improves, but sometimes it 
behaves strangely.” Such abrupt changes were not mentioned with 
the TAF+ 

and Manual procedures. 
While the performance diferences between the techniques are 

clear, participants found it somewhat difcult to clearly state which 
technique was better at adapting better and faster. Our experiment 
involves selecting targets of diferent distances and sizes, further 
adding to the challenge of diferentiating the techniques subjec-
tively when the user is focused on the task and not on perceiving the 
diferences. Prior work that analyzed user experience in pointing 
interactions had similar challenges. For example, Casiez and Rous-
sel [11] investigated the impact of various transfer functions. They 
summarized that the users could not tell the diferences between 
diferent transfer functions despite the signifcant diferences in per-
formance. Casiez et al. [14] conducted a thorough investigation on 
the impact of diferent types of transfer functions, focusing only on 
performance metrics. Lee et al. [52] compared various transfer func-
tion adaptation techniques and found few signifcant diferences 
when analyzing NASA-TLX scores. 

G PERFORMANCE OF EACH PERFORMANCE 
METRIC 

Figure 23 and Figure 24 show the individual performance metrics 
throughout 10 iterations for absolute pointing and relative pointing, 
respectively. We ran one-way repeated-measures ANOVA on each 
iteration across all metrics and found that the meta-BO procedure 
led to either comparable or signifcantly better results than the 
other baselines. 

For normalized completion time in absolute pointing: Meta-

BO outperformed BO (� < 0.01) at the third, sixth, and eighth 
iterations; Meta-BO also outperformed Manual at the fourth itera-
tion. For aiming error and trajectory travel distance in absolute 
pointing: Meta-BO outperformed BO (� < 0.01) at the third itera-
tion, and also outperformed Manual at the fourth iteration. 

For normalized completion time in relative pointing: Meta-

BO outperformed BO (� < 0.01) at the third, sixth, and seventh 
iterations; Meta-BO also outperformed Manual at the fourth itera-
tion. For trajectory travel distance in relative pointing: Meta-BO 
outperformed both BO and Manual (� < 0.01) at the third itera-
tion. These signifcant diferences are also marked in Figure 23 and 
Figure 24. 



A Meta-Bayesian Approach for Rapid Online Parametric Optimization for Wrist-based Interactions CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

Table 13: The mean and standard deviation of the raw NASA-TLX scores in relative pointing. No signifcant diferences were 
found across all questions. 

Questions Meta-BO BO Manual 

1. How mentally demanding was the task? 9.09 (s.d. = 5.52) 8.36 (s.d. = 4.65) 8.55 (s.d. = 4.39) 
2. How physically demanding was the task? 10.09 (5.89) 8.64 (4.25) 8.73 (3.41) 
3. How hurried or rushed was the pace of the task? 6.36 (4.90) 5.09 (3.81) 5.18 (3.22) 
4. How successful were you in accomplishing what you were asked to do? 4.64 (4.27) 2.91 (1.97) 5.09 (3.70) 
5. How hard did you have to work to accomplish your level of performance? 8.27 (4.00) 8.91 (4.48) 10 (2.76) 
6. How insecure, discouraged, irritated, stressed, and annoyed were you? 6.36 (4.41) 5.91 (3.36) 6.73 (4.54) 
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Figure 23: The performance of individual objective functions in absolute pointing. The error bar shows a 95% confdence 
interval. The red ∗ (meta-BO and BO) and the black ∗ (meta-BO and Manual) signs denote a signifcant diference between the 
two procedures at that iteration. 

relative

Se
co

nd
 / 

bi
ts

Aiming error Trajectory travel distance

Iteration number Iteration number Iteration number

Normalized completion time

Sy
st

em
 u

ni
t

Ra
tio** * * **

Figure 24: The performance of individual objective functions in relative pointing. The error bar shows a 95% confdence interval. 
The red ∗ (meta-BO and BO) and the black ∗ (meta-BO and Manual) signs denote a signifcant diference between the two 
procedures at that iteration. 

H PERFORMANCES AND OPTIMAL 
PARAMETER SETTINGS OF EACH USER 

Figure 25 shows the performances of absolute pointing of each user, 
and Table 14 presents all the users’ optimal parameter settings 
of absolute pointing. 10 users start with better performance with 
meta-BO than with other baselines. Only P5 had a lower initial 
performance; still, the performance of Meta-BO quickly increased 
after the frst 2 iterations for this user. Upon examining the optimal 
parameter setting of each user (Table 14), we can see most users’ 
optimal parameter settings have relatively high �� and �� , which 

is aligned with Figure 27. P5 is exceptional since their optimal pa-
rameter setting is drastically diferent from others, which explains 
their lower initial performance in Figure 25 (also denoted as P5). 
However, TAF+ 

can still identify an optimal setting which is difer-
ent from other participants for P5, highlighting its capacity to deal 
with drastically diferent new users. 

Figure 26 shows the performances of relative pointing of each 
user, and Table 15 shows the optimal parameter settings for relative 
pointing of each user. 4 users have the highest performance with 
meta-BO than with other procedures in the frst iteration. Later at 
the 3rd iteration, meta-BO results in the best performances for 8 
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Figure 25: The performances of absolute pointing of each individual user. The � axis is the number of iterations, and the � 
axis is the weighted-sum fnal objective value. Note that we have converted the problem into a maximization problem by 
normalizing the objective functions. 

users, which highlights TAF+’S strength in faster adaptation. Ta-
ble 15 further shows there exist good parameter ranges for most 
users. For instance, the best range of �� and �1 is around 0.7 to 
1. However, P4’s optimal setting has a particularly low �1, which 
results in a slightly lower starting performance when using TAF+ 

(P4 in Figure 26). Again, despite the diversity, TAF+ 
is able to iden-

tify the unique optimal setting, showing its ability to handle the 
diversity within the user group. 
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Figure 26: The performances of relative pointing of each individual user. The � axis is the number of iterations, and the � axis is 
the weighted-sum fnal objective value. Note that we have converted the problem into a maximization problem by normalizing 
the objective functions. 
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User ID �� �� 

P1 0.81 0.86 
P2 0.94 1.00 
P3 0.78 0.86 
P4 0.71 0.78 
P5 0.28 0.21 
P6 0.87 0.86 
P7 0.86 0.80 
P8 0.82 0.94 
P9 0.65 0.89 
P10 0.67 0.77 
P11 0.92 0.94 

Table 14: Every user’s optimal parameter setting for absolute 
pointing. Note that we normalized all the parameter values 
into the [0, 1] range for easier interpretation. 

User ID �� �1 �2 �3 

P1 0.58 0.73 0.22 0.49 
P2 0.86 0.95 0.47 0.34 
P3 0.89 1.00 0.56 0.38 
P4 0.99 0.02 0.40 0.53 
P5 0.69 0.73 0.25 0.40 
P6 0.67 0.78 0.26 0.45 
P7 0.66 1.00 0.32 0.26 
P8 0.73 0.75 0.38 0.55 
P9 0.81 0.66 0.37 0.13 
P10 0.81 0.82 0.25 0.26 
P11 0.79 0.04 0.20 0.62 

Table 15: Every user’s optimal parameter setting for relative 
pointing. Note that we normalized all the parameter values 
into the [0, 1] range for easier interpretation. 



I VISUALIZING THE OBJECTIVE FUNCTION 
OF ABSOLUTE POINTING INTERACTION 
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To visualize the objective function of absolute pointing, we ftted 
all the observations (<parameter values, resulting objective value>), 
across all users and across both TAF+ 

and BO procedures into a GP. 
Then, we query the GP’s predicted mean. The resulting objective 
function values are plotted as a heatmap (Figure 27). 

We can see that high �� and �� values generally allow for better 
user performance. Also, when �� and �� have high diferences 
(indicating unbalanced transfer functions along two axes), the user 
performance is generally poor. 

running Ubuntu 22.04.3 OS with an Intel i7-10150U CPU. The rela-
tively long computation time highlights the potential challenges of 
applying multi-objective TAF to fast-paced interactions. 
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Figure 27: The visualization of the objective function of the 
absolute pointing. 

J SIMULATING MULTI-OBJECTIVE TAF USING 
EXPECTED HYPERVOLUME INCREASE 

Figure 28 shows the hypervolume at each iteration of the simulation. 
There are three optimization procedures: multi-objective TAF, stan-
dard multi-objective BO, and random samples. The multi-objective 
TAF largely follows our TAF+ 

setting as described in the paper but 
changed the base acquisition function from Expected Improvement 
to Expected Hypervolume Improvement (EHVI) [19, 22]. With this 
change, multi-objective TAF identifes the Pareto-optimal param-

eter settings. In contrast, TAF+ 
identifes one optimal parameter 

setting for a weighted-sum objective metric. The baseline multi-

objective Bayesian optimization with EHVI was implemented with 
BoTorch [4]20. In this simulation, the computation time per iteration 
ranges from 62 to 95 seconds, conducted on a ThinkPad X1 Carbon 

20
Hyperparameter settings: We used a single-task GP with Matern 5/2 kernel. Similar 

to Chan et al. [15], we set � = 1. We further set 10 optimization restarts for the 
optimization of the acquisition function, 1024 restart candidates for the acquisition 
function optimization, and 512 Monte Carlo samples to approximate the acquisition 
function. 
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Figure 28: The hypervolume of three diferent procedures derived via a simulation. 
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