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ABSTRACT

To better explore the incorporation of pointing and gesturing
into ubiquitous computing, we introduce WRIST, an inter-
action and sensing technique that leverages the dexterity
of human wrist motion. WRIST employs a sensor fusion
approach which combines inertial measurement unit (IMU)
data from a smartwatch and a smart ring. The relative ori-
entation difference of the two devices is measured as the
wrist rotation that is independent from arm rotation, which
is also position and orientation invariant. Employing our test
hardware, we demonstrate that WRIST affords and enables a
number of novel yet simplistic interaction techniques, such
as (i) macro-micro pointing without explicit mode switch-
ing and (ii) wrist gesture recognition when the hand is held
in different orientations (e.g., raised or lowered). We report
on two studies to evaluate the proposed techniques and we
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present a set of applications that demonstrate the benefits of
WRIST. We conclude with a discussion of the limitations and
highlight possible future pathways for research in pointing
and gesturing with wearable devices.

CCS CONCEPTS

• Human-centered computing → User studies; Point-
ing devices; Pointing; Gestural input.

KEYWORDS

Smartwatch; wrist gesture; distal pointing; large displays
ACM Reference Format:

Hui-Shyong Yeo, Juyoung Lee, Hyung-il Kim, Aakar Gupta, Andrea
Bianchi, Daniel Vogel, Hideki Koike, Woontack Woo, and Aaron
Quigley. 2019. WRIST: Watch-Ring Interaction and Sensing Tech-
nique for Wrist Gestures and Macro-Micro Pointing. In 21st Inter-
national Conference on Human-Computer Interaction with Mobile
Devices and Services (MobileHCI ’19), October 1–4, 2019, Taipei, Tai-
wan. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3338286.3340130

1 INTRODUCTION

Interacting with large public displays or small on-body wear-
able devices, such as smartwatches remains a challenge.
The nature of interaction with large public displays or a
“display ecosystem” [59] presents many challenges from
non-interactivity, requires vision-based sensing (e.g., camera,
depth sensor) or requires specific input devices (e.g., pointer,

https://doi.org/10.1145/3338286.3340130
https://doi.org/10.1145/3338286.3340130
https://doi.org/10.1145/3338286.3340130


MobileHCI ’19, October 1–4, 2019, Taipei, Taiwan Yeo et al.

remote) for interaction at a distance. At the smaller, and
more intimate scale, interacting with a wearable device is
challenging when we consider the range of interaction, de-
vice size, device type, social context and physical constraints.
For example, interacting with a smartwatch or fitness tracker
often necessitates two hands, one to wear the device and
another one for touching the screen or pressing buttons.

The range of human motions have often been considered
in isolation, rather than as part of a continuous interaction
experience with such devices. The human hand, fingers and
wrist afford us a wide range of gestures, including pointing,
that can support proximate, distant and hybrid interactions.
Indeed, the dexterity of the human wrist joint with flexion-
extension, radioulnar deviation, and rotation typically allows
people a broad range of movements, making it one of the
most dexterous parts of the human body and promising to
consider for input and interaction [38, 46].
We introduce the Watch-Ring Interaction and Sensing

Technique (WRIST). It can measure very small changes in
the wrist orientation at high refresh rate by using a sensor
fusion approach that combines IMU data from two orienta-
tion sensors, one on the wrist and one on the finger. Further,
we leverage the dexterity of the human wrist and enable
new types of interactions with wearable devices and distant
displays, using only one hand. While our proposed approach
requires two devices (smartwatch + smart ring), wearing
watches and jewellery is commonplace. Hence, we envision
future scenarios where WRIST technology is incorporated
into day-to-day smart wearable devices in use.
In WRIST we make the following contributions: 1) we

study macro-micro distal pointing without explicit mode
switching which relies of natural forearm and wrist move-
ments; 2) we explore robust single-handed wrist gestures
recognition with simple hardware and sensor fusion, and
study the orientation and movement invariant input; 3) we
developed several applications demonstrating the benefits of
the proposed input techniques. These techniques are studied
in a lab setting with a large projected display for pointing
and a treadmill for gesture recognition while on-the-go.

2 RELATEDWORK

Our work lays at the intersection of three areas of human-
computer interaction, including distal pointing, single-handed
gestures, and wearable input device research. Here we give
an overview of each topic with the most relevant work.

Sensing of Single-Handed Gestures

Currently, interacting with a wrist-worn smart device (e.g.,
smartwatch or fitness tracker) often necessitates two hands.
As a result, researchers are currently exploring the design of
single-handed gestures [8, 23] and at-your-side interaction
[35, 54]. Techniques such as tilting, flicking or shaking of

Figure 1: (left) Assembled custom smart ring device (right)

when worn on finger together with an Android smartwatch.

devices are also explored. Indeed, many smartwatches have
such gestures built-in as part of the operating system. How-
ever, these gestures are discrete and non-continuous, where
each flick or tilt triggers only one action, which is limited in
terms of interaction capabilities and expressiveness.
Research has also explored various sensing techniques

to detect single-hand gestures, such as Electromyography
[51], Infrared [19, 37], motion [20, 60, 66], vision [9, 28],
magnet [11, 12], force [17, 34], acoustic [32, 73–75], electrical
impedance [76] and capacitive [48]. However, each of these
techniques is not without limitations, such as complex sensor
requirements, high computational demand, use of repetitive
gestures and the need for audible signals for acoustic sensing.
Most importantly, they typically only support discrete and
non-continuous input. Alternative input modalities such as
speech recognition or blowing air to trigger an input [13, 50]
are also possible, but they can suffer from background noise
or can be socially awkward to perform in the public.

Our approach aims to support continuous input for single-
handed interaction, while using only IMU information, which
is already available in most off-the-shelf wearable devices.

Wrist and Finger Interactions

As the human wrist is dexterous with flexion-extension, ra-
dioulnar deviation, and rotation movements [16, 46], some
approaches such as WristWhirl [19] and “With a Flick of
the Wrist” [57] explore the idea of leveraging the wrist joint
as a controller, which is aligned with our approach. Indeed,
many of the distal pointing related tasks [22, 61] involve the
combination of the arm and wrist motions. This also gives
rise to text entry techniques based on wrist tilting [24, 45, 67]
and tilt-based gesture typing [21, 71].

The growing availability of smartwatches and smart rings
have prompted researchers to explore new forms of human-
computer interaction and augmentation. Duet [14], VibRing
[3] and Expressy [68] leverage the smartwatch or smart ring
to add expressiveness to touch-based interactions on a phone
or tablet device. Digital digits [52] and “Ring Form Factor”
[15] surveyed and explored the design space of smart rings
for interaction. Webb et al. [64] explored using wearable
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devices such as a smart ring as context for surface and pen-
based interaction. Magic Finger [70] and TouchCam [56]
enables users to interact with surfaces using optical sensor
embedded in a wearable ring form factor. DeformWear [65]
is a tiny finger worn device that enables precise input using
pressure, shear and pinch deformations.

PredicTouch [33] andMoschetti et al. [40] explore the com-
bination of wrist and finger IMU for reducing touch screen
latency and for recognition of daily gestures but these are not
focused on single-handed interaction. SynchroWatch [49]
uses rhythmic correlation between a user’s thumbmovement
(magnet ring) and on-screen blinking controls (smartwatch).
In WRIST we explore combining data from a smartwatch
and smart ring for distal pointing and gesture interaction.

Distal Pointing

There is an extensive literature on pointing interaction for
large displays, using laser pointers [43], WiiMote controllers
[47, 53], and everyday smart devices [55]. Kopper et al. [29]
studied four possiblemodels for a distal pointing taskwhereas
Jota et al. [25] compared different ray pointing techniques
for very large displays. “Put-that-there” [4] is the first project
that explored free hand pointing combined with voice recog-
nition. Vogel and Balakrishnan [63] introduced free hand
pointing and clicking techniques for distant display. The idea
was later applied to a single wearable EMG-based armband
(Myo) in [22]. Watchpoint [26] and TickTockRay [27] employ
a commodity smartwatch for pointing in ubiquitous display
or virtual reality environments. However, to enable clicking
without requiring the second hand, it uses wrist rolling as the
trigger, which can be difficult to maintain accurate pointing.

By contrast, WRIST pointing is largely based on the idea of
allowing users to perform both coarse and precise modes in
pointing. For example, the MAGIC pointing technique [72]
uses eye tracking for coarse contextual pointing combined
with a regular pointing device for precision tasks. Hybrid-
Pointing [18] lets users easily switch between absolute and
relative pointing with a pen. Cao et al. [6] also explored hy-
brid pointing devices that combined both finger and hand
movement to control the cursor. Nancel et al. [42] formally
define Dual-Precision pointing which explicitly divide point-
ing tasks into a coarse phase and a precise phase, requiring
explicit mode switches. Tsandilas et al. [61] explored the
physical constraints of the wrist and extend the range of
its input based on rate control, thus without requiring ex-
plicit mode switching mechanisms. Our work support hybrid
coarse and fine pointing without explicit mode-switching.

3 PROTOTYPE

To leverage the dexterity of the humanwrist, our systemmea-
sures human wrist in terms of flexion/extension, radial/ulnar
deviation, pronation/supination and maps the measurement

Figure 2: (left) Initiallywe triedwith a smartphone imitating

a ring and controlling primitive blocks. (right) Trying with

a custom assembled ring and controlling a 3D hand model.

as an input, akin to a joystick controller. Due to the hand bio-
mechanics and limited range of freedom around the wrist
joint [16, 46], the horizontal movement is more challenging
than vertical movement. As observed in WristWhirl [19],
drawing a circle shape resulted in an oval shape instead.

To support different contexts such as hand-front, hand-up
and hand-down interaction, it is important that our tech-
nique works with any arm orientation. This is where using
only one watch or one ring falls short, due to lack of a refer-
ence point. When using only one ring, it cannot distinguish
between a whole arm gesture or just the wrist gesture.
Prior work such as the WristWhirl [19] prototype is not

sensitive to small wrist movement near to neutral position.
Therefore, users needed to exert more tilt for the infrared
sensors to pick up the wrist motion. This led to potentially
larger gestures and longer gesture times. We hypothesize
that using IMUs should overcome these issues.

Hardware

Initially we tested the idea by simply holding a smartphone in
the hand and combining the sensor’s readings with those of a
smartwatch. By tilting the wrist we were able to manipulate
a primitive hand model consisting of cubes (Figure 2 left).
We then created our own prototype ring (Figure 1 & 2 right)
using simple hardware for the flexibility in accessing the IMU
data. Nonetheless, we envision this could be miniaturized,
as already shown in various commercial smart rings (Oura
[44], Motiv [41], Talon [58]) and wearable IMU (Meta [36]).
For the custom smart ring, we employed a Bosch IMU

(BNO055) with the Arduino platform with WiFi (ESP8266).
All the components are mounted on a 3D printed C-shape
ring (Figure 1). As a result, the ring is self-contained, and
works without cable tethering to another device. The ring
weighs about 18gram in total including a 105mAh lithium ion
battery. We used the LG Urbane (Android Wear) smartwatch.
Both IMUs are updating at 50Hz. We use a force sensitive
resistor (FSR) which acts a button that only requires a light
press from the thumb. In second iteration we also replaced
the 3D printed ring with a Velcro strap for better fitting.
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Software

We extract the orientation of the watch and the ring using the
Android SDK andArduino library, respectively. The IMU data
from the ring is streamed to the smartwatch through WiFi,
where the calculation of the xy position is computed locally.
Optionally, all data are streamed to a PC for i) visualization
by gesture trail points (Figure 10) and hand deformation
(Figure 2) and ii) saving for offline analysis. The experiment
software is written in Python whereas the demo applications
are written in Android and Unity game engine.

To find the difference in the rotation matrix, we rotate the
reference IMU towards the target IMU. We take the target
rotationmatrix andmultiply with the inverse of the reference
rotation matrix, as shown in the following equation.

RDif f = RTarдet x Inverse(RRef erence )

Then we convert the rotation matrix to Euler angles. We
compared the angles to the initial angles obtained during
a neutral pose and map the difference to xy position. For
controlling a cursor we can use absolute or relative mapping.

Technical Evaluation

We performed a set of tests to measure the accuracy of the
system. For ground truth data, we employ the SteamVR
tracking system which consists of a HTC Vive tracker and
light house system that can provide low latency and sub-
millimeter accuracy [62]. We affixed the Vive tracker to-
gether with smartwatch and smart ring on a wooden hand,
using masking tape and hot glue, as shown in Figure 3.

The first test is to evaluate the total drift that occurs after
extensive motion, by measuring the initial orientation and
compared with the final orientation over the course of the
test. We place the wooden hand at an initial position and
orientation, then re-center all the sensors orientation to a
virtual cube in the software. Then we take the wooden hand
and swing it freely in random motion while walking around
in different directions within the tracking space of Vive light
house, which is about 2x2 meter. After that we place it back
at the initial position and orientation (marked by pen) and
make sure the difference in orientation (in quaternion) was
close to zero (±0.5 degree) by comparing the current Vive
tracker’s orientation with the initial orientation recorded.
We then measure the angular differences of the smartwatch
and smart ring with respect to the ground truth data (i.e., the
angles required to rotate this quaternion to the reference
quaternion). We did this 14 times and found an average
difference of 1.13 degrees (SD: 0.56) for smartwatch and 1.58
degrees (SD: 0.96) for the smart ring.

In a second test, wemounted the sensors on a platform that
is capable of rotating in 3 degrees of freedom (Figure 3 right).
With the Vive tracker acting as the reference, we measure
the quaternion angular difference between the smartwatch

Figure 3: (left) Wooden hand with sensors affixed. (middle)

Visualization of real-time orientation of the sensors. (right)

Sensors placed on a platform that supports 3 DoF rotation.

vs. tracker and smart ring vs. tracker in real-time, while we
rotated the platform randomly in all 3 DoF. Through this
process, we collected about 50k data points. We found the
mean difference to be 3.09 degrees (SD: 2.29) for smartwatch
and 8.27 degrees (SD: 3.19) for smart ring.

Regarding the higher error in the second test, subsequent
analysis suggested that the motorized platform used in the
second test contains ferrite core. Therefore, it has affected the
sensor fusion technique that combines data from accelerom-
eter, gyroscope and epspecially magnetometer. Also, we ne-
glected to account for network delays from the smartwatch
and smart ring using WiFi compared to a Vive tracker which
streams data using a dedicated Bluetooth dongle. Hence, dur-
ing fast motion, the watch+ring data was not synchronized
with the ground truth data, causing higher error rates to be
recorded. Furthermore, the higher error on the ring is poten-
tially caused by misalignment and the higher distance from
the center of the Vive tracker due to the physical constraint
in mounting the sensors together on the platform. Therefore,
we should treat this result of the second test as the worst case
scenario where network delays and ferrite elements exist,
such as in real-world environments.

4 WRIST POINTING FOR LARGE DISPLAYS

Large displays are increasingly commonplace as a means to
broadcast and distribute content. However, such displays typ-
ically do not offer any interaction capabilities for their users.
Here we explore how our technique can enable macro-micro
pointing on such displays without explicit mode switch-
ing. Pointing at interfaces on displays, called distal pointing,
is commonly achieved with forms of raycasting with laser
pointers or mobile devices [47]. However, such techniques
have inherent precision problems, due to natural hand jitter,
lack of support surface and the so called “Heisenberg effect”
in spatial interaction [5] where the cursor position is unin-
tentionally changed when the button is clicked. These issues
are further amplified when the display area or the distance
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Figure 4: (left) Raycasting (middle) Laser+Gyro in precision mode (right) WRIST pointing where the circle area cursor and the

crosshair are visible at the same time, the forearm controls the circle while the wrist controls the crosshair.

to the display gets larger. Existing research has proposed
numerous enhancements, including input filtering, area cur-
sors, zoom in on an area, or relative pointing with clutching.
In particular, hybrid or dual-precision techniques [42, 63]
have shown great potential, which WRIST is based on.

Typically, the first phase of a distal pointing task consists
of a ballistic movement [39] that prioritizes direction and
velocity. As the cursor approaches a target, it slows down
and a finer control is required to select or stay within the
target, which is the second phase. Dual-precision techniques
[42] explicitly separate these two and the transition between
them into a coarse mode and a precise mode, using an explicit
mode switch, triggered by a second button or hand posture.

WRIST’s Macro-Micro Pointing Design Space

In WRIST, the wrist and finger movements can be indepen-
dently tracked from the forearm movement, allowing us to
consider various two-tier techniques such as those explored
in the multimodal interaction literature (e.g., Gaze+Gesture
[10] and Pinpointing [31]). Here we apply this type of in-
teraction to continuous macro and micro pointing, without
explicit mode switching. The forearm controls an area cur-
sor that points at a coarse location while the wrist or finger
controls a precise crosshair independently pointing at a finer
location, as shown in Figure 4 (right). We speculate that this
allows more accurate pointing at smaller targets while avoid-
ing the time required for explicit mode switching. Indeed,
Balakrishnan and MacKenzie [2] found that the wrist or fore-
arm performs better than the index finger alone in pointing
tasks, which motivates our approach that uses the forearm
for coarse pointing and wrist/finger for precise pointing.

Baseline Performance Techniques for Pointing

For comparison, we re-implemented three other pointing
techniques including i) Raycasting, ii) Relative pointing with
clutching [22] and iii) a dual-precision technique (Laser+Gyro
[42]). Hence, in total we tested four different techniques. In
each case distinct sounds are played for click-down and click-
up events. Various design choices such as using a long click

as the trigger and linear mapping are incorporated into our
implementations as described below. Since employing IMU
for pointing can be negatively affected by hand tremor and
the Heisenberg effect, we apply 5 correction and filtering
techniques that are inspired by previous work [22]. The first
3 are applied to all pointing techniques while the last 2 are
only applied to WRIST pointing.

Trigger. For the Relative technique that require clutching
and the Laser+Gyro technique that require mode switching,
initially we employed a secondary button as the trigger, as in
prior work. However, during pilot study this proved confus-
ing for the users and resulted in too much of the Heisenberg
effect. As a result, for our studies we instead used a long
click as the trigger, which is a sufficiently distinguishable
event. While this single button solution reduces confusion,
the trade-off is it introduces a delay. Here, while the button
remains clicked, it is in clutching or precise mode. Once the
button is released, there is a short delay before switching
back to non-clutching (400ms) or coarse mode (800ms).

Linear Mapping. For the relative technique, we did not use an
acceleration function that was employed by previous work
[42, 63]. As with desktop pointing, in practice acceleration
can be customized to each user, making it easier to traverse
a long distance. However, to maintain consistency here we
employ a linear mapping function. The control to display
(CD) ratio was tuned so that a user can reach anywhere on
the screen comfortably with just one full clutch.

Cursor position filtering. We used the 1 Euro filter [7] in
all four techniques, with suitable parameters tuned during
our pilot study. For the Raycasting technique, we needed to
use more filtering due to the extreme difficulty in pointing
and clicking on the smallest targets (16mm). This decision
was made to avoid high levels of user frustration during our
studies. However, this level of filtering may introduce lag
and slow down the pointing speed across all 3 target widths.

Click position correction. Clicking a button on the smart ring
caused the Heisenberg effect [5], where the cursor appears to
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“jump”, making it difficult to click a small target at a distance.
This is especially difficult if both the click-down and click-up
have to be within a small target to be considered correct.
To minimize this effect, we saved the cursor positions in a
buffer and used the position from the previous 10 frames for
click-down and 15 frames for click-up. In addition, we use a
pressure sensor that acts as the button to reduce this effect
as it does not require a strong force to activate.

Temporal click filtering. There might be an unintentional
click immediately after an activation, or after successfully
clicking on a target. If such a click occurred within within
400ms after a trial or activation, they are ignored.

Locking the area cursor. In WRIST macro-micro pointing,
the crosshair (micro) is controlled by the wrist and finger,
and it is tethered to the center of the area cursor (macro)
which is controlled by the forearm. As such, the crosshair
can appear to be jittering if there are movements of the
forearm. To avoid this, we lock the position of area cursor
(macro) when the crosshair deviates from the center more
than a predetermined threshold, which indicates that a micro
pointing is occurring. This makes the crosshair fully stable
and only controlled by the wrist/finger movement. Now,
minor forearm movements and arm shake do not move the
area cursor at all until the crosshair returns to the center.
This can be overridden by a sufficient forearm movement
that unlocks the area cursor caused by macro pointing.

Reset the crosshair to center of area cursor. In WRIST point-
ing, the crosshair might deviate slightly from the center of
the area cursor at different parts of the screen due to mis-
alignment between the two IMUs, and it accumulates over
time due to IMU drift. We adopted a strategy whereby the
crosshair will always reset to the center if there is large fore-
arm movement - which occurs when user is aiming for the
next target using the forearm. However, this strategy intro-
duces an issue if the user did not physically reset the wrist
posture after a trial when the crosshair resets to center. For
example, if the user already bent their wrist to the left for
current trial, and further moved the forearm to the left for
the next trial without resetting the wrist posture, while the
crosshair has reset to the center, then the user cannot bend
the wrist to the left anymore. This can be overcome if the
participant changes the wrist posture to the natural posture
and then make a sufficient large forearm movement.

5 USER STUDY: POINTING INTERACTION

In order to evaluate the potential of WRIST for pointing on
a large display, we conducted a user study. The goal of this
study is to compare the task completion time and error rate
between the four pointing techniques: RayCast (RC), Relative
(R), Laser+Gyro (LG) and WRIST (W).

Participants and Apparatus

We recruited 12 participants (4 females) aged between 20 and
27 (Mean: 22.0, SD: 1.96) from our university. 3 of them were
left-handed but use computer mouse with their right hand.
Participants were compensated $15 for their time. They stood
2 meters in front of a front-projected display. We use a short
throw FHD projector (1920x1080). Our wall surface is 3.5 by
2.0m with area of 7.0m2 compared to MyoPoint’s 4.6 by 1.4m
with area of 6.44m2 [22]. Our pixel density is smaller but we
ensured the smallest target (16mm) is clearly visible.

Task and Procedure

We followed the study design used in MyoPoint [22], which
also follows Vogel and Balakrishan [63] where there are sets
of a Transition task followed by a Sequence task. The current
target appears as a white circle on a black background and
the next target appears as a white outline (see video figure).

Transition task. simulates transitioning from resting to point-
ing. It requires the participant to activate the technique first
and then select the target. One minor difference from previ-
ous design is our cursor always appears at the center of the
screen when activated.

Sequence task. simulates continuous pointing usage. Imme-
diately after the transition target is selected, 6 more targets
appear in sequence after each other, at controlled distances
and random directions. After the sequence task, participants
lower their hand and deactivate to transition back to the
non-pointing task. Due to randomized controlled distances,
there might be a lack of range within the display to show the
next target if the current target is towards the middle while
the next controlled distance is the largest one (2680mm).
Hence, we create a yellow experiment “guiding” target that
does not require a click. As the name implies, it guides the
participants to point to an appropriate location before the
next target appears at a controlled distance from there.

Study Design

We try to follow closely the three levels of distance (D) and
width (W) as in MyoPoint [22] and Vogel and Balakrishnan
[63]: DL = 4020mm, DM = 2680mm and DS = 1340mm;WL
= 144mm,WM = 48mm andWS = 16mm. However, due to
the shorter horizontal length of our wall display, we have
to replace the longest distance (4020mm) to a smaller one
(670mm). In addition, the cursor always starts at the center of
the display after activation, hence for the Transition task we
use only 1340mm for amplitude. We use Technique, Distance
and Width as independent variables.

For each technique, participants were given time to prac-
tice for up to a maximum of 5 minutes, followed by 2 blocks
of measured trials. Each block consists of 3 sections of tasks,
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Figure 5: Mean selection times by

width for different techniques.

Figure 6: Mean error rates by width

for different techniques.

Figure 7: Mean selection times by

distance for different techniques.

where each section uses a different width that is held con-
stant throughout the section. The order of width sections
was Latin square balanced. Each section had 3 sets of 2 tasks
(1 Transition target and 6 Sequence targets). For the Sequence
task, target distances were randomized an equal number of
times within each section. For our Transition task, the dis-
tance is always at 1340mm from the center. Participants rest
between techniques and complete a NASA TLX form. Partici-
pants did not report substantial fatigue during the 90 minutes
experiment. In summary, the experimental design was: 12
participants x 4 techniques x 2 blocks x 3 sections of target
widths x 3 sets of 7 targets (1 + 6) = 6048 trials.

Following the stringent protocol used in MyoPoint [22],
trials were only considered successful if both click-down
and click-up were inside the target during the first attempt.
Otherwise, the trial is recorded as an error. Participants only
proceed to next trial after successfully clicking the target,
perhaps after multiple attempts. In total we recorded 825
error trials out of 6048 trials, which is 13.6% and is in line
with the results in both MyoPoint (17.9%) and Vogel and
Balakrishan’s (18.4%) study. Of the 825 error trials, there
are 2.2 misses per trial until it is finally succeeded (if both
a click-down and a click-up occurred outside the target, it
is counted as 2 misses). Error trials are excluded from our
subsequent timing analysis.

Results

Results for selection time and error were analyzed with a
repeated measures 3-way ANOVA. Greenhouse-Geisser cor-
rection was used where Mauchly’s test of sphericity was
significant. Bonferroni corrections were applied for post-hoc
analyses. Figures 5 and 7 show the mean selection time while
Figure 6 shows mean error rate. Error bars are 95% CI.

Selection Time. We found significant main effects of Tech-
nique, Width, and Distance and significant interaction effects
of Technique*Width (F(1.589,17.482) = 10.308, p<.005,η2 = .484)
and Technique*Distance (F(2.117,23.282) = 50.910, p<.001, η2 =

.822) on selection time. Due to the interaction effects, we
ignored the main effects and ran 1-way ANOVAs for each
Width on Technique and for each Distance on Technique.
The effect of Technique on selection time was significant for
each of the three widths and each of the three distances. We
then run pairwise comparisons to see where the significant
differences lie. Table 1 shows these results.

The pairwise comparisons show that for medium and large
width targets, RayCast is significantly faster than Relative
andWRIST. Further, Laser+Gyro is significantly faster than
Relative for medium and large targets, and significantly faster
than WRIST for large targets. Relative is significantly slower
than others for the largest width. For Distance, RayCast is
significantly faster than Relative and WRIST for medium
and large distances. RayCast is also significantly faster than
Laser+Gyro andWRIST for the shortest distance.

Selection Error. We found significant main effects of Tech-
nique, Width, and Distance and a significant interaction ef-
fect of Technique*Width (F(2.406,26.470) = 6.676, p<.001, η2 =
.378) on selection error rate. No interaction effects involv-
ing Distance were found and therefore the main effect of
Distance is useful (F(2,22) = 6.432, p<.01, η2 = .369). The
mean error rates across all techniques for the small, medium,
and large distances were 13.7% (95% CI: 10.4-17%), 11.5%
(95% CI: 8.4-14.7%), and 15% (95% CI: 11.4-18.7%) respectively.
Pairwise comparisons show that the largest distance caused
significantly higher errors than medium distance (p<0.01)
across all techniques.
Due to the Technique*Width interaction, we ignored the

main effects of Technique andWidth and ran 1-way ANOVAs
for each Width on Technique. The effect of Technique was
significant for Width = 16, 48 but not 144. The significant
effect results are shown in Table 2, along with the pairwise
comparisons. Figure 6 shows the graph. The pairwise com-
parisons show that RayCast had a significantly higher error
rate than Relative andWRIST for the smallest width.
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Table 1: 1-way ANOVA on Selection Time for Sequence task

(only showing significant pairwise comparisons). For in-

stance, the first row shows the 1-way ANOVA on the effect

of Technique on selection time for the smallest width, with

the corresponding F-statistic, p-value, and effect size. RC<R

indicates that pairwise comparisons showed that RayCast

had a significantly lower selection time than Relative along

with its p-value.

Effect of TECH F-value p-value η2

Width=16 F (3, 33) = 10.633 <0.001 0.492
Pairwise RC<R <.005
Width=48 F (3, 33) = 24.744 <0.001 0.692
Pairwise RC<R, R>LG, RC<W <.001, <.005, <.005
Width=144 F (1.642, 18.057) = 33.081 <0.001 0.750
Pairwise RC<R, R>LG, RC<W, R>W <.005 for all
Distance=670 F (3, 33) = 15.492 <0.001 0.585
Pairwise RC<LG, RC<W, LG<W <.05,<.001,<.05
Distance=1340 F (3, 33) = 18.192 <0.001 0.623
Pairwise RC<R, R>LG, RC<W <.005,<.005,<.001
Distance=2680 F (3, 33) = 34.886 <0.001 0.760
Pairwise RC<R, R>LG, RC<W <.005 for all

Table 2: 1-way ANOVA on Selection Error (Only showing sig-

nificant pairwise comparisons), RC: Raycast, R: Relative, LG:

Laser+Gyro, W:WRIST.

Effect of Technique F value p value η2

Width=16 F (1.819, 20.007) = 7.709 <0.001 0.412
Pairwise RC>R, RC>W <.05, p<.005
Width=48 F (3, 33) = 5.848 <0.005 0.347
Pairwise R<LG <.05

Clutching and Precise Mode. For the Relative technique, on
average participants performed 0.73 clutch-events per trial
with average clutch time of 1.06 second. As expected, partic-
ipants clutch more for longer distance than smaller distance
(DL = 1.44, DM = 0.58, DS = 0.25). Participants also clutch
less for larger targets than smaller targets (WL = 0.66,WM
= 0.75,WS = 0.79). This can be explained as we observed
participants tend to be willing to go to extreme postures for
large targets because it is easy to click, but for the smaller
targets, they tend to perform a clutch first and then employ
a relaxed posture to point and click.

For Laser+Gyro technique, on average participants switched
into precise mode for 0.47 times per trial. As expected, partici-
pants switched less for larger targets than smaller targets (WL
= 0.016,WM = 0.244,WS = 1.165). Interestingly, participants
switched more for longer distances than shorter distances
(DL = 0.525, DM = 0.471, DS = 0.431) when the different
widths are presented an equal number of times for different
distances.

Figure 8: Movement time by Fitts’s ID.

Pointing Results Discussion

Due to the absence of clutching or a precise mode, RayCast
performs better than the rest on selection time, but has higher
error rates at least for the smallest width. Our error rate
on RayCast for the smallest target is 32%, which is lower
than Vogel and Balakrishan’s 56% [63]. We attribute this to
heavier filtering that we employ (lower fcmin in 1 Euro filter
[7], which reduces jitter but increases lag). While Vogel and
Balakrishan argued that Raycast’s high error rates prevent it
from being a practical technique, our results show that with
more filtering, it is actually usable, at the cost of higher lag.
Indeed, some participants favor it due to its simplicity.
In contrast to RayCast, Relative has significantly slower

speeds which can be explained by its clutching time (mean
1.06s). Overall, no one technique emerges as the perfect tech-
nique across all widths and distances, for both time and error.
However, given RayCast’s significantly high error rates and
Relative’s significantly slow speeds, Laser+Gyro and WRIST
offer a better balance of speed and accuracy. Yet, Laser+Gyro
requires explicit switch to the precise mode while WRIST
does not. In addition,WRIST appeared to be most accurate
for the smallest width but the differences are not significant.
While we followed an established experimental protocol,

it is worth noting that the white outline visualization for next
target was on occasion quite confusing and misled the users.
In addition, the button position is not ideal and is difficult
to reach for some participants. Especially when bending the
wrist to the right, the button is now further away from the
thumb and it became more difficult for the thumb to click
on the button (assuming right handed). Alternative forms of
click sensing may address this in future work.

We fit both sets of task data to Fitts’ models (Figure 8). The
movement time of Relative technique in our implementation
is slower compared to MyoPoint [22], which indicate that
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Figure 9: NASA TLX score for 4 techniques, lower is better.

indeed acceleration function plays an important role as an
improvement for easier traversing of long distance while
maintaining accuracy when selecting small targets.

Subjective Ratings and Feedback

We conducted Friedman tests on the NASA-TLX ratings.
There were no statistical significant differences between the
four techniques for any of the six metrics. Figure 9 shows
the results. Participants were divided in their opinions. Some
participants prefer RayCast overall, as it is the most straight-
forward technique. They expressed that although clicking
on a very small target is more difficult using RayCast, they
suggest that in real-life there is rarely a need to click on very
small target on a large display from a large distance. “The
laser (RayCast) was good, even for small targets it is relatively
okay” (P6). “Laser (RayCast) was quite accurate in most ways
and quite fast. Even for really small target, that depends on
your finger and the way you use it but it is manageable still
for small target” (P5).

Participants did not like Relative, commenting that while
it may be good for short distances, it is frustrating for longer
ones, especially for large targets that can be easily clicked.
“The last one (Relative) I felt it was actually quite a lot of effort
to move it all, I can see like depends like where you use it, a bit
say like in a real world kind of place, that kind of exaggerated
movement will get put off, cause it might get a bit odd” (P8).
For Laser+Gyro, participants expressed concern that the

800ms delaywas too short to perform a click before switching
back to coarsemode. “For laser+gyro, once youmiss it you have
to do it again and it takes longer” (P6). It was a compromise
that we designed to avoid a long waiting time before moving
on to next trial during the user study.
Participants noted that WRIST has a learning curve but

were also positive that given more practice they would be-
come faster. For WRIST, some participants developed a strat-
egy to always point coarsely above the target and then move
the wrist/finger down, as wrist vertical flexion has a wider
range of motion, and is hence easier to perform. “I like the
WRIST most. Even though it took longer to getting used to, but
once I am getting into it it felt like it was faster. I just like it, it’s
fu.” (P3). “Once you get pass the learning, then it does actually

becomes quite fast. For small target it is actually really good.
For bigger target you don’t really need to, it is just the same as
the others. So in that way it is not bad at all” (P5).

6 WRIST GESTURES FOR SINGLE-HANDED

INTERACTION

Encouraged by the positive results of using WRIST for point-
ing on large screens and the wide range of motions par-
ticipants demonstrated we decided to explore whether the
same system can be used for robust gesture recognition in
semi-realistic conditions (e.g., walking on a treadmill). The
primary motivation here is to evaluate if there is potential
of using WRIST for gestures interaction, then it can be also
combined with pointing to afford hybrid pointing+gesture
interaction. For example, a user could point a location on
a large screen, and then fluidly switch to a different tool
(e.g., a marker) using a gesture and finally highlight some
information on the screen.

For the evaluation with gestures, we largely follow proto-
col in [19] which uses a gesture recognition task. In order to
achieve a higher ecological validity we chose to test a semi-
realistic condition with users walking on a treadmill, while
the hand was placed in three different postures (hand-front,
hand-down, and hand-up). In total, our experiment consists
of eight gestures tested for each of the three hand postures.

Participants

We recruited 6 participants (2 females) between the ages of
24 and 29 (Mean: 26.5) from a local university. They are all
right-handed and were compensated $10 for their time.

Task and Procedure

We selected 8 gestures: left, right, up, down, triangle, rectan-
gle, circle and question mark. In each trial, the name of a
gesture was shown to the participants on a laptop placed be-
side the treadmill (Figure 11 right). Participants were asked
to perform the gesture using the wrist of the non-dominant
hand, by holding the pressure button with the thumb while
performing the gestures. Since we only study the walking
condition, we asked the participants to walk on a treadmill
with speed set at 3km per hour. We limit the practice time
to 10 minutes and we collect a set of templates (one for each
gesture) after the practice. Each template is used in a $1
gesture recognizer [69] for real-time recognition during the
actual study. We also conduct offline analysis afterwards.

Study Design

The experiment employed a within subject design with three
hand-postures (hand-front, hand-down and hand-up) and
eight gestures (4 directional and 4 shape). Each condition
was repeated 10 times with gestures presented in counter-
balanced order following a Latin square design. During the
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Figure 10: Experiment software interface with different pos-

tures: hand-front and hand-down).

Figure 11: (left) Sample gestures from user study, 4 direc-

tional and 4 shapes. (right) Participant performing gesture

trials while walking on a treadmill.

first 4 trials, participants look at the display with a GUI pre-
senting the real-time gesture trails and gesture recognition
result while performing the gestures. On the last 6 trials,
participants do not look at the display but use their muscle
memory and imagination while performing the gestures. In
total, we collected 3 hand postures x 8 gestures x 10 repeti-
tions x 6 participants = 1440 trials.

Results

Task Completion Time. The task time was recorded when
the button was pressed until it was released. Overall, par-
ticipants spent on average 1304ms per gesture (Figure 12).
Directional gestures (858ms) took less time than shape ges-
tures (1750ms). Within all gestures, the rectangle took the
longest time (2068ms). Interestingly, one-way ANOVA shows
hand postures did not have a significant effect on the task
completion time (F(1,5) = 1.65, p>0.05).

Shape gesture recognition accuracy. We used the $1 gesture
recognizer [69] for accuracy measurement. Using only a
single template collected during the practice session, the
real-time recognition result is 73.06%. Using a 6-fold random
cross-validation, the result increases to 88.75%. Using the
same user data to train and test (3-fold cross-validation), the
result increases to 90% (user-dependent). Finally, using a
leave-one-user out for training and testing on the remaining
user, the average accuracy is 81.8% (user-independent).

Directional gesture recognition accuracy. We can measure the
accuracy of directional marks by fitting the line using linear
regression. We calculate the R-squared (R2) coefficient and
standard error (SE). The average R2 is 0.76 (SD: 0.29) and SE
is 0.12 (SD: 0.13). Hand posture did not have a significant

Figure 12: Task time shown by gestures and hand posture.

effect on both R2 (p = 0.59) and SE (p = 0.90). By taking the
line slope and compare against the ideal mark, we calculate
the angular error as 5.27 degrees (SD: 17.69). Figure 11 shows
example gestures recorded during the study.

Subjective Ratings and Feedback

To assess physical exertion, we asked participants to rate
each posture on the Borg CR10 scale. On average, the scores
are 4 (hand-front), 3.5 (hand-down) and 5.67 (hand-up). There
were some interesting points of feedback from the partic-
ipants. Indeed, 2 participants mentioned that hand-down
was the easiest posture, and another 2 participants prefer
hand-front posture for visual feedback and stability. Most
participants rated the hand-up as the hardest condition.
P4 and P5 commented that they felt it was easier to per-

form the gesture without looking at the screen with real-time
gesture trails feedback, although they were not sure about
its accuracy. “I could focus my mind on the gesturing (imagin-
ing my gesture)” (P5). “Maybe just only me, when check the
screen, it is more difficult, because imagining and checking are
difficult” (P4). Indeed, we observed that P1 could never per-
form the triangle gesture properly in the hand-down posture
when looking at the screen (during practice and during their
first four trials), but could perform triangle gesture when
hand-front and hand-up. Then, surprisingly to us and also P1
himself, during the fifth trial - when we removed the screen
from him, he could perform the triangle gesture perfectly in
the hand-down posture using only his imagination. On the
other hand, P3 commented that visual feedback was helpful
to assist him in drawing the correct shape.
P3 and P5 also commented about the bad positioning of

the button, due to their short thumbs. P6 said the ring is quite
heavy and would prefer haptic feedback that tells him if the
gesture is accepted or recognized. Finally, P5 said that she
would like to use her right hand since she is a right-handed
person. “I’m sure I’ll rock with my right hand!!!” (P5).

Gesture Results Discussion

Our study shows that participants can use the wrist as an in-
put controller with our system, and it is accurate and robust
to walking motion. Surprisingly, participants can perform
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the gestures equally fast in the three different postures we
studied, although hand-up posture was rated the most diffi-
cult. In general, participants commented the system was not
difficult to learn or familiarize themselves with.
Our results are encouraging, considering that we con-

ducted the gesture study on the non-dominant hand, as we
believe it better represents the real-world conditions, and
provides a lower-bound performance. Moreover, in practice
most people wear watches on their non-dominant hand on
a daily basis. We do expect the result to fare better on the
dominant hand as it is usually more dexterous and agile. For
example, an input controller device for mobile AR/VR head-
set (Oculus Go or Google Daydream) that is mainly used by
the dominant hand, can take advantage of our technique.

Another interesting point is that we also only considered
the walking condition, which is indeed a challenging semi-
realistic situation for evaluating a new prototype. Further-
more, a system like WristWhirl [19] is susceptible to lighting
conditions, as there are infra-red sources in the environment
including natural daylight. Our system which employs IMU
does not suffer from lighting conditions, but it is more sensi-
tive to motion, especially while walking. Nonetheless, our
result (walking) is actually comparable to WristWhirl [19]
(standing). More work is needed to understand the usability
of this system in real-world conditions.

7 APPLICATIONS

We demonstrate several applications with WRIST to ex-
plore the potential of single-handed pointing and gesture-
recognition interactions in different usage scenarios, as shown
in Figure 13, 14, 15 and the video figure.

Smartwatch Applications

The first set of applications run on the smartwatch and use
gestures only. (i) Gesture Shortcuts (Figure 13 left) afford
a simple, yet rapid, means to customize and quickly access
specific applications on the smartwatch. (ii) Map Naviga-

tion (Figure 13 middle) with WRIST supports rate-control
of a range of map navigation methods, such as zooming and
panning, operated with only one hand. (iii) Analog Clock

(Figure 13 right) with WRIST supports rate-control of the
minute hand for setting an alarm or timer conveniently with
only one hand.

Cursor Control and Gaming for Distant Display

The second set of applications are for interaction with a
range of distant display such as a desktop computer or public
display, based on controlling a cursor. (i) Gesture-based
Game (Figure 14 left) WRIST can take advantage of suitable
wrist gestures, as they require pulling, flapping or throwing
with the wrist. (ii) Cursor-based Game (Figure 14 middle)
WRIST allows a single hand to input by controlling a cursor,

Figure 13: (left) Gestures recognizer for shortcut commands,

(middle) 2D map navigation, (right) Analog clock.

Figure 14: Example applications on the PC: (left) Swiping

game (middle) Angry bird and (right) MS Paint application.

without relying on a physical mouse. Thus enabling cursor-
based games such as Angry Bird. (iii) MS Paint similarly,
the ability to control cursor allows various type of painting
application. Beyond these, we suggest that future work such
as WRIST interaction in virtual reality or text entry with
shape writing/gesture typing [30, 71] are possible.

Hybrid Macro Pointing and Micro Gestures

The last set of applications are based on hybrid interactions,
combining pointing with gestures. (i) Smart home and IoT

control (Figure 15 left) allows user to point at smart devices
at home and then perform intuitive wrist gesture to control
different settings, such as lamp’s brightness, speaker’s vol-
ume or a TV’s channel. (ii)Pie andMarkingMenus (Figure
15 middle) are common and useful in graphical user interface
(GUI). WRIST allows user to point at different menus, and
then uses wrist gesture to select the second level menu. This
can be particular useful in multi-device, multi-display envi-
ronments. (iii) Gesture Checklist (Figure 15 right) allows
convenient pointing at list of tasks and perform a check or a
cross gesture to mark them.
The example applications demonstrate the potential of

pointing, gesturing and hybrid interactions which rely on
simple single handed input.

8 DISCUSSION, LIMITATIONS AND FUTURE

WORK

Our two studies have explored both a range of gestures and
macro-micro pointing with a smartwatch and smart ring.
However, there are a number of limitations. The presented
gesture study has a limited scope of testing a small set of
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Figure 15: Example applications using hybrid pointing and gestures: (left)Multiple pie/markingmenuwithout require clicking

(middle) Point at smart devices to controlwithout clicking (right) Checklist that interprets different gestures, a check or a cross.

simple gestures. Future work should include more complex
gestures. In addition, the $1 gesture recognizer can be re-
placed by more advanced techniques such as machine learn-
ing. Further filtering may reduce the effect of motion.

It is important to highlight limitations in the study design
of such pointing techniques. The use of a long press for
clutch and lack of acceleration function are design choices
which impact on the ability to compare such techniques.
For example, prior work on dual-precision technique uses a
mousewith two buttons that are operated by different fingers.
For a ring intended to be wore on the index finger, using
two buttons that are operated by different fingers would be
infeasible, hence the choice of relying on a single button
with long press. Further, since the ring is worn on the inner
end of the finger near the MCP joint, the movement can be
a mixture of finger or wrist movement, but the horizontal
finger movement is more restricted than vertical movement.
During the user study, the participants were free to decide
how to use the finger or wrist movement. Further studies
should evaluate the different techniques with a range of other
parameter choices from acceleration to clutching.

A further limitation is that this form of smart ring has to
be self-powered using a battery. This limits how much minia-
turization may be possible. Advances in energy harvesting
continue and may address this problem to some extent. In ad-
dition, jewellery in the form of a smart ring is quite personal
and does not suit everyone. Future work aims to explore a
passive ring, and in particular, a ring with a magnet [1, 49].

Here we only explored a single ring. Yet people wear mul-
tiple rings, on multiple fingers and hands. Our future work
aims to study multiple rings for more expressive gestures
such as twisting a virtual dial with two fingers. Rings on
different hands, can enable bi-manual interaction or allow
for the recognition of which hand is touching a surface. Fi-
nally, motion correlation using wrist gestures [49] for sensor
fusion is another topic of interest for the future work.

While there are a number of limitations, one of the contri-
bution of WRIST is its position and orientation invariance.
Now users can perform a gesture even when their hands

are facing down or behind their back, thus can be more sub-
tle and discreet. Although not validated through user study,
we believe WRIST has the following advantages over other
input techniques or modalities: i) eyes-free and supports
subtle/discreet interaction, ii) suitable for virtual reality envi-
ronments and iii) works while wearing gloves. Future work
aims to validate these claims and explore how subtle and
effortless such gestures can be.

9 CONCLUSION

In this paper, we presented a single-handed interaction tech-
nique which leverages a smartwatch and a smart ring to
enable wrist gestures and pointing. Our work here has only
explored the potential of WRIST and further studies are re-
quired. Among the four pointing techniques we studied, our
result shows that WRIST macro-micro pointing appeared
to be most accurate for the smallest width although the
differences are not significant. As described, the gestures
recognition is orientation invariant and can work when one
hand is held up or resting down. Through technical and user
evaluation, we show this technique is robust and participants
can perform the gestures equally fast in the three postures
we studied. Finally, demonstrated here and in our video fig-
ure, we show a range of applications in gaming, cursor and
pointer control, gesture and hybrid input, map navigation,
watch control and context-aware movements, which can
take advantage of the WRIST watch-ring interaction and
sensing technique.
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